485 research outputs found

    Asymptotics of the number of threshold functions on a two-dimensional rectangular grid

    Get PDF
    Let m,n≥2m,n\ge 2, m≤nm\le n. It is well-known that the number of (two-dimensional) threshold functions on an m×nm\times n rectangular grid is {eqnarray*} t(m,n)=\frac{6}{\pi^2}(mn)^2+O(m^2n\log{n})+O(mn^2\log{\log{n}})= \frac{6}{\pi^2}(mn)^2+O(mn^2\log{m}). {eqnarray*} We improve the error term by showing that t(m,n)=\frac{6}{\pi^2}(mn)^2+O(mn^2). $

    The arithmetic derivative and Leibniz-additive functions

    Get PDF
    An arithmetic function ff is Leibniz-additive if there is a completely multiplicative function hfh_f, i.e., hf(1)=1h_f(1)=1 and hf(mn)=hf(m)hf(n)h_f(mn)=h_f(m)h_f(n) for all positive integers mm and nn, satisfying f(mn)=f(m)hf(n)+f(n)hf(m) f(mn)=f(m)h_f(n)+f(n)h_f(m) for all positive integers mm and nn. A motivation for the present study is the fact that Leibniz-additive functions are generalizations of the arithmetic derivative DD; namely, DD is Leibniz-additive with hD(n)=nh_D(n)=n. In this paper, we study the basic properties of Leibniz-additive functions and, among other things, show that a Leibniz-additive function ff is totally determined by the values of ff and hfh_f at primes. We also consider properties of Leibniz-additive functions with respect to the usual product, composition and Dirichlet convolution of arithmetic functions

    Microbiology of Bartholin's Duct Abscess

    Get PDF
    Objective: The aim of the study was to determine the currently most frequent microbial findings in Bartholin's duct abscess
    • …
    corecore