2,496 research outputs found

    Entire solutions of hydrodynamical equations with exponential dissipation

    Get PDF
    We consider a modification of the three-dimensional Navier--Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as \ue ^{|k|/\kd} at high wavenumbers k|k|. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than \ue ^{-C(k/\kd) \ln (|k|/\kd)} for any C<1/(2ln2)C<1/(2\ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C=C=1/ln2C= C_\star =1/\ln2. The same behavior with a universal constant CC_\star is conjectured for the Navier--Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier--Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.Comment: 29 pages, 3 figures, Comm. Math. Phys., in pres

    Probabilistic tractography in the ventrolateral thalamic nucleus: cerebellar and pallidal connections

    Get PDF
    The ventrolateral thalamic nucleus (VL), as part of the ‘motor thalamus’, is main relay station of cerebellar and pallidal projections. It comprises anterior (VLa) and posterior (VLpd and VLpv) subnuclei. Though the fibre architecture of cerebellar and pallidal projections to of the VL nucleus has already been focus in a numerous amount of in vitro studies mainly in animals, probabilistic tractography now offers the possibility of an in vivo comparison in healthy humans. In this study we performed a (a) qualitative and (b) quantitative examination of VL-cerebellar and VL-pallidal pathways and compared the probability distributions between both projection fields in the VL after an (I) atlas-based and (II) manual-based segmentation procedure. Both procedures led to high congruent results of cerebellar and pallidal connectivity distributions: the maximum of pallidal projections was located in anterior and medial parts of the VL nucleus, whereas cerebellar connectivity was more located in lateral and posterior parts. The median connectivity for cerebellar connections in both approaches (manual and atlas-based segmentation) was VLa > VLpv > VLpd, whereas the pallidal median connectivity was VLa ~ VLpv > VLpd in the atlas-based approach and VLpv > VLa > VLpd in the manual approach.Peer reviewe

    Influence of temperature and viscosity on anthracene rotational diffusion in organic solvents: Molecular dynamics simulations and fluorescence anisotropy study

    Get PDF
    This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/107/21/10.1063/1.475172.Molecular dynamics simulations and fluorescenceanisotropy decay measurements are used to investigate the rotational diffusion of anthracene in two organic solvents—cyclohexane and 2-propanol—at several temperatures. Molecular dynamics simulations of 1 ns length were performed for anthracene in cyclohexane (at 280, 296, and 310 K) and in 2-propanol (at 296 K). The calculated time constants for reorientation of the short in-plane axis were 7–9 and 11–16 ps at 296 K in cyclohexane and 2-propanol, respectively, in excellent agreement with corresponding fluorescence depolarization measurements of 8 and 14 ps. The measured rotational reorientation times and the calculated average rotational diffusion coefficients varied in accord with Debye–Stokes–Einstein theory. Their magnitudes were close to values predicted for an ellipsoid of shape and size equivalent to an anthracene molecule, and exhibited predictable variation with external conditions—increasing with temperature and decreasing with solventviscosity. However, analysis of the calculated rotational diffusion coefficients for the individual molecular axes gave a more complex picture. The diffusion was highly anisotropic and changes in temperature and solvent type led to nonuniform variation of the diffusion coefficients. The nature of these changes was rationalized based on analysis of variation of solvation patterns with temperature and solvent

    A measure of centrality based on the spectrum of the Laplacian

    Get PDF
    We introduce a family of new centralities, the k-spectral centralities. k-Spectral centrality is a measurement of importance with respect to the deformation of the graph Laplacian associated with the graph. Due to this connection, k-spectral centralities have various interpretations in terms of spectrally determined information. We explore this centrality in the context of several examples. While for sparse unweighted networks 1-spectral centrality behaves similarly to other standard centralities, for dense weighted networks they show different properties. In summary, the k-spectral centralities provide a novel and useful measurement of relevance (for single network elements as well as whole subnetworks) distinct from other known measures.Comment: 12 pages, 6 figures, 2 table
    corecore