772 research outputs found

    Anisotropic optical conductivity of the putative Kondo insulator CeRu4_4Sn6_6

    Full text link
    Kondo insulators and in particular their non-cubic representatives have remained poorly understood. Here we report on the development of an anisotropic energy pseudogap in the tetragonal compound CeRu4_4Sn6_6 employing optical reflectivity measurements in broad frequency and temperature ranges, and local density approximation plus dynamical mean field theory calculations. The calculations provide evidence for a Kondo insulator-like response within the aaa-a plane and a more metallic response along the c axis and qualitatively reproduce the experimental observations, helping to identify their origin

    Highly anisotropic interlayer magnetoresistance in ZrSiS nodal-line Dirac semimetal

    Full text link
    We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not well understood. Our measurements of the polar out-of-plane AMR show a surprisingly different response with a pronounced cusp-like feature. The maximum of the cusp-like anisotropy is reached when the magnetic field is oriented in the aa-bb plane. Moreover, the AMR for the azimuthal out-of-plane current direction exhibits a very strong four-fold aa-bb plane anisotropy. Combining the Fermi surfaces calculated from first principles with the Boltzmann's semiclassical transport theory we reproduce and explain all the prominent features of the unusual behavior of the in-plane and out-of-plane AMR. We are also able to clarify the origin of the strong non-saturating transverse magnetoresistance as an effect of imperfect charge-carrier compensation and open orbits. Finally, by combining our theoretical model and experimental data we estimate the average relaxation time of 2.6×10142.6\times10^{-14}~s and the mean free path of 1515~nm at 1.8~K in our samples of ZrSiS.Comment: 8 pages, 4 figure

    Elastic properties of FeSi

    Full text link
    Measurements of the sound velocities in a single crystal of FeSi were performed in the temperature range 4-300 K. Elastic constants C12C_{12} and C44C_{44} deviate from a quasiharmonic behavior at high temperature; whereas, C12C_{12} increases anomalously in the entire range of temperature, indicating a change in the electron structure of this materia

    Hall-effect evolution across a heavy-fermion quantum critical point

    Full text link
    A quantum critical point (QCP) develops in a material at absolute zero when a new form of order smoothly emerges in its ground state. QCPs are of great current interest because of their singular ability to influence the finite temperature properties of materials. Recently, heavy-fermion metals have played a key role in the study of antiferromagnetic QCPs. To accommodate the heavy electrons, the Fermi surface of the heavy-fermion paramagnet is larger than that of an antiferromagnet. An important unsolved question concerns whether the Fermi surface transformation at the QCP develops gradually, as expected if the magnetism is of spin density wave (SDW) type, or suddenly as expected if the heavy electrons are abruptly localized by magnetism. Here we report measurements of the low-temperature Hall coefficient (RHR_H) - a measure of the Fermi surface volume - in the heavy-fermion metal YbRh2Si2 upon field-tuning it from an antiferromagnetic to a paramagnetic state. RHR_H undergoes an increasingly rapid change near the QCP as the temperature is lowered, extrapolating to a sudden jump in the zero temperature limit. We interpret these results in terms of a collapse of the large Fermi surface and of the heavy-fermion state itself precisely at the QCP.Comment: 20 pages, 3 figures; to appear in Natur

    Sequential localization of a complex electron fluid

    Full text link
    Complex and correlated quantum systems with promise for new functionality often involve entwined electronic degrees of freedom. In such materials, highly unusual properties emerge and could be the result of electron localization. Here, a cubic heavy fermion metal governed by spins and orbitals is chosen as a model system for this physics. Its properties are found to originate from surprisingly simple low-energy behavior, with two distinct localization transitions driven by a single degree of freedom at a time. This result is unexpected, but we are able to understand it by advancing the notion of sequential destruction of an SU(4) spin-orbital-coupled Kondo entanglement. Our results implicate electron localization as a unified framework for strongly correlated materials and suggest ways to exploit multiple degrees of freedom for quantum engineering.Comment: 21 pages, 4 figures (preprint format

    Effects of electronic correlations and disorder on the thermopower of NaxCoO2

    Full text link
    For the thermoelectric properties of NaxCoO2, we analyze the effect of local Coulomb interaction and (disordered) potential differences for Co-sites with adjacent Na-ion or vacancy. The disorder potential alone increases the resistivity and reduces the thermopower, while the Coulomb interaction alone leads only to minor changes compared to the one-particle picture of the local density approximation. Only combined, these two terms give rise to a substantial increase of the thermopower: the number of (quasi-)electrons around the Fermi level is much more suppressed than that of the (quasi-)holes. Hence, there is a particle-hole imbalance acting in the same direction as a similar imbalance for the group velocities. Together, this interplay results in a large positive thermopower. Introducing a thermoelectric spectral density, we located the energies and momenta regions most relevant for the thermopower and changes thereof.Comment: 23 pages, 27 figures, accepted at PR

    Tactile Sensors Based on Conductive Polymers

    Get PDF
    This paper presents results from a selection of tactile sensors that have been designed and fabricated. These sensors are based on a common approach that consists in placing a sheet of piezoresistive material on the top of a set of electrodes. We use a thin film of conductive polymer as the piezoresistive mate¬rial. Specifically, a conductive water-based ink of this polymer is deposited by spin coating on a flexible plastic sheet, giving it a smooth, homogeneous and conducting thin film. The main interest in this procedure is that it is cheap and it allows the fabrication of flexible and low cost tactile sensors. In this work we present results from sensors made using two technologies. Firstly, we have used a flexible Printed Circuit Board (PCB) technology to fabricate the set of electrodes and addressing tracks. The result is a simple, flexible tactile sensor. In addition to these sensors on PCB, we have proposed, designed and fabricated sensors with screen printing technology. In this case, the set of electrodes and addressing tracks are made by printing an ink based on silver nanoparticles. The intense characterization provides us insights into the design of these tactile sensors.This work has been partially funded by the spanish government under contract TEC2006-12376-C02

    Resistivity, Hall effect and Shubnikov-de Haas oscillations in CeNiSn

    Get PDF
    The resistivity and Hall effect in CeNiSn are measured at temperatures down to 35 mK and in magnetic fields up to 20 T with the current applied along the {\it b} axis. The resistivity at zero field exhibits quadratic temperature dependence below \sim0.16 K with a huge coefficient of the T2T^2 term (54 μ\muΩ\Omegacm/K2^2). The resistivity as a function of field shows an anomalous maximum and dip, the positions of which vary with field directions. Shubnikov-de Haas (SdH) oscillations with a frequency {\it F} of \sim100 T are observed for a wide range of field directions in the {\it ac} and {\it bc} planes, and the quasiparticle mass is determined to be \sim10-20 {\it m}e_e. The carrier density is estimated to be 103\sim10^{-3} electron/Ce. In a narrow range of field directions in the {\it ac} plane, where the magnetoresistance-dip anomaly manifests itself clearer than in other field directions, a higher-frequency (F=300400TF=300\sim400\text{T}) SdH oscillation is found at high fields above the anomaly. This observation is discussed in terms of possible field-induced changes in the electronic structure.Comment: 15 pages, 5 figures, to appear in Phys. Rev. B (15 Sept. 2002 issue

    Fermi-Surface Reconstruction in the Periodic Anderson Model

    Full text link
    We study ground state properties of periodic Anderson model in a two-dimensional square lattice with variational Monte Carlo method. It is shown that there are two different types of quantum phase transition: a conventional antiferromagnetic transition and a Fermi-surface reconstruction which accompanies a change of topology of the Fermi surface. The former is induced by a simple back-folding of the Fermi surface while the latter is induced by localization of ff electrons. The mechanism of these transitions and the relation to the recent experiments on Fermi surface are discussed in detail.Comment: 8 pages, 7 figures, submitted to Journal of the Physical Society of Japa
    corecore