Pressure-induced non-Fermi-liquid behavior in a heavy-fermion compound Ce₇Ni₃ around the antiferromagnetic instability

Kazunori Umeo

Department of Materials Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima 739, Japan

Hideoki Kadomatsu

Cryogenic Center, Hiroshima University, Higashi-Hiroshima 739, Japan

Toshiro Takabatake

Department of Materials Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima 739, Japan (Received 7 August 1996)

Under increasing pressure, the Néel temperature of the heavy-fermion compound Ce₇Ni₃ (T_N =1.9 K for P=0) decreases and vanishes near $P_c \approx 0.33$ GPa. Non-Fermi-liquid behavior appears at 0.4 GPa in both the specific heat and ac magnetic susceptibility, $C_m/T \sim -\ln T$ and $\chi_{ac} \propto (1 - \alpha T^{1/2})$. Above 0.62 GPa, the normal Fermi-liquid state recovers, as indicated by the *T* independence of $C_m T$ and the T^2 dependence of the magnetic resistivity. The observed crossover with pressure is described by self-consistent renormalization theory of spin fluctuations (SF) in terms of the characteristic SF temperature T_0 which increases by a factor of 20 for $0.33 \leq P \leq 0.75$ GPa. [S0163-1829(97)51502-5]

Heavy-fermion compounds have been the focus of intense investigation over the last decade.¹ The low-temperature properties have been generally described within the framework of the conventional Fermi-liquid theory, while one observes huge values of the Sommerfeld coefficient, γ $[=C/T(T\rightarrow 0)]$, a Pauli-like spin susceptibility, χ , and the coefficient A of the T^2 dependence of electrical resistivity ρ with a relation, $\gamma \propto \chi \propto A^{1/2}$ (Ref. 1). Recently, non-Fermiliquid (NFL) behavior, $C/T \sim -\ln T$, $\Delta \chi \propto -T^{1/2}$ and $\Delta \rho \propto -T$ has been reported for some U- and Ce-based alloys when the magnetic state is destroyed by the substitution of the constituent elements. A two-channel Kondo model was proposed to explain the NFL behavior, in U-based systems such as $U_{0.2}Y_{0.8}Pd_3$ (Ref. 2), $Th_{1-x}U_xRu_2Si_2$ ($x \le 0.07$) (Ref. 3), and $U_{0.9}Th_{0.1}Be_{13}$ (Ref. 4). However, this model is not adequate to describe the NFL behavior observed in $CeCu_{5.9}Au_{0.1}$,⁵ CePtSi_{0.9}Ge_{0.1},⁶ and Ce_{1-x}La_xRu₂Si₂ (Refs. 7 and 8) with orthorhombic or tetragonal site symmetry for Ce^{3+} . In both $CeCu_{1-x}Au_x$ and $CePtSi_{1-x}Ge_x$, the ground state changes from a nonmagnetic state to an antiferromagnetically ordered state near $x_c = 0.1$, where the NFL behavior has been observed.

Recently, Moriya and Takimoto have applied the selfconsistent renormalization (SCR) theory of spin fluctuations to the heavy-fermion systems near the antiferromagnetic instability.⁹ It has been shown that the specific heat and resistivity exhibit the temperature variation of the NFL form, $C/T \propto -\ln T$ and $\rho \propto T^n (n \approx 1)$ in a certain range of temperature. Kambe *et al.* have used this theory to analyze *C* and ρ of Ce_{1-x}La_xRu₂Si₂ (Refs. 7 and 8) and CeCu_{6-x}Au_x,⁸ and have shown that the NFL behavior is the consequence of antiferromagnetic spin fluctuations of 4*f* electrons with characteristic energy much smaller than that in itinerant 3*d*electron systems. They have pointed out further that the lattice disorder introduced by the alloying must be taken into account, because the SCR theory assumes a perfect lattice. Therefore, a systematic study of physical properties near the magnetic instability is desired on a heavy-fermion compound with an ordered crystal structure. In this respect, we should recall that weak magnetism is usually unstable against pressure.¹⁰ For the antiferromagnetic heavy-fermion alloy CeCu_{5.7}Au_{0.3} (T_N =0.49 K for P=0), the NFL behavior in C(T) was observed at the critical pressure P_c =0.82 GPa where the Néel temperature T_N vanishes.¹¹

We have chosen Ce₇Ni₃, which is a heavy-fermion antiferromagnet with $T_N=1.9$ K.¹²⁻¹⁴ This compound crystallizes in the Th₇Fe₃-type hexagonal structure with three nonequivalent sites for Ce atoms.¹⁵ Since one site and the other sites have trigonal and monoclinic symmetry, respectively, the two-channel Kondo effect is unlikely in this compound. In our previous work,¹⁶ we found that the transition from magnetic to nonmagnetic state occurs at an extremely low pressure $P_c=0.33$ GPa from the measurement of ac magnetic susceptibility χ_{ac} . This low critical pressure enables us to study the whole transition from the critical regime to the Fermi liquid regime. In this paper, we report the observation of pressure-induced NFL behavior in Ce₇Ni₃ without alloying. Anomalous behaviors in C(T), $\rho(T)$ and $\chi_{ac}(T)$ under high pressure will be interpreted in terms of the abovementioned SCR theory.

Samples of Ce₇Ni₃ and La₇Ni₃ were prepared by arc melting under an argon atmosphere. From the slowly cooled ingot, small single crystals elongating along the hexagonal *c* axis have been obtained. The electron-probe microanalysis indicated no deviation in the stoichiometry larger than 1 at. % for the host phase and the presence of cerium oxide at approximately 1%. The heat capacity up to 0.75 GPa was measured using the ac method adapted for a high-pressure studies.¹⁷ The sample, a thermometer of RuO₂ and a heater of moleculoy wire were lapped together in an indium sheet.

R692

© 1997 The American Physical Society

By measuring the total heat capacity of Ce₇Ni₃(3.22 mg) and the In sheet (20.31 mg), we calibrated both the pressure and the absolute value of C(T); the former was determined from the known pressure dependence of the superconducting transition temperature $T_c(P)$ of In, and the latter from the jump of *C* at T_c .¹⁸ The electrical resistivity under pressure up to 1.5 GPa was measured by a dc four-terminal method in the range $0.35 \le T \le 300$ K. The measurement of ac magnetic susceptibility was performed in an ac field of 0.18 mT at 100 Hz by using the Hartshorn bridge in the ranges $0.35 \le T \le 20$ K and $0 \le P \le 0.62$ GPa.

Figure 1(a) shows C(T) of Ce₇Ni₃ and La₇Ni₃ at various pressures. For P=0, a λ -type anomaly appears at $T_N=1.9$ K. With increasing pressure, both the specific heat jump $\Delta C(T_N)$ and T_N decrease and vanish for P=0.33 GPa. The pressure dependence of T_N is consistent with that determined by the measurement of χ_{ac} , ¹⁶ as shown in the inset of Fig. 2. The magnetic contribution to the specific heat C_m was estimated by the subtraction of C for La₇Ni₃. For this purpose, the value of C for La_7Ni_3 under pressures was estimated by the linear interpolation between the two values at 0 GPa and 0.69 GPa. Thus obtained, C_m/T is plotted in Fig. 1(b) as a function of lnT. At $P_c = 0.33$ GPa, the C_m/T curve shows an upturn. At 0.38 GPa, however, C_m/T is proportional to $-\ln T$ over more than one decade in T, which is the NFL behavior. At a higher pressure of 0.54 GPa, C_m/T has a downward curvature below 4 K. Above 0.62 GPa, C_m/T is saturated at low temperatures, indicating the recovery of the normal Fermi-liquid state.

In order to confirm the transition from the NFL behavior to the Fermi-liquid behavior, we present in Fig. 2 the data of χ_{ac} vs $T^{1/2}$ at selected pressures between 0.40 GPa and 0.62 GPa. At 0.40 GPa, the NFL behavior, $\chi_{ac} \sim -T^{1/2}$, is observed only below 1 K, while at 0.49 GPa it is observed up to 5 K. At 0.62 GPa, χ_{ac} becomes almost independent of temperature, again indicating the recovery of Fermi-liquid behavior. It is noteworthy that the value of χ_{ac} at 0.6 K is reduced by one order of magnitude in the measured pressure range.

The SCR spin fluctuations theory involves the following factors:⁹ the staggered susceptibility at 0 K, $\chi_Q(0)$ (Q is the antiferromagnetic ordering wave vector), the exchange energy J_O [roughly of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction] with an assumed dispersion $J_Q - J_{Q+q}$ $=Dq^2$ up to the effective Brillouin zone vector q_B , and the local dynamical susceptibility described as $\chi_L(\omega) = \chi_L/(1$ $-i\omega/\Gamma_L$). By combining these factors, the characteristic SF energy in the momentum space is given by $T_A = Dq_B^2/2$, while that in the energy space by $T_0 = T_A \Gamma_L \chi_L / \pi$. The parameter y_0 is connected to T_A and χ_Q through the relation $y_0 = 1/[2T_A\chi_0(0)]$, and $y_0 = 0$ at the critical boundary. The static uniform susceptibility χ_n at $T \approx 0$ K is described as $\chi_n = 1/[2(1-y_0)T_A]$. Hence, the observed decrease of χ_{ac} implies the increase of y_0 and/or T_A with increasing pressure. The relation of $J_0/T_A = 1$ (Ref. 9) in turn suggests that pressure increases the RKKY interaction energy J_{Q} .

We now apply the SCR theory to describe the observed T dependence of C_m by using three parameters y_0 , χ_c , and T_0 , where χ_c is the cutoff wave vector in units of q_B .⁹ The solid lines in Fig. 1(b) are the results of fitting assuming

FIG. 1. (a) Temperature dependence of the specific heat of Ce_7Ni_3 and La_7Ni_3 at various pressures. (b) Magnetic specific heat divided by temperature C_m/T above 0.33 GPa as a function of $\ln T$. Data for each *P* are shifted downward consecutively by 0.1 J/K^2 mol Ce for clarity. Solid lines indicate fits by the SCR theory (see text). The inset shows the pressure dependence of T_0 , the characteristic temperature of spin fluctuations.

 $y_0=0$ for $0.33 \le P \le 0.54$ GPa, $y_0=0.02$ for P=0.62 GPa and $y_0=0.1$ for $P \ge 0.72$ GPa. Thus obtained, T_0 increases strongly with pressure as shown in the inset of Fig. 1(b). At the critical boundary, C_m/T is expected to follow the form $C_m/T=\gamma -\beta T^{1/2}$ for $T \le T_0$.⁹ This form is not observed at P=0.33 and 0.38 GPa down to 0.5 K because this temperature is not sufficiently below T_0 . At P=0.54 GPa, however, C_m/T follows the above form between 0.5 and 3 K, being

FIG. 2. ac magnetic susceptibility χ_{ac} of Ce₇Ni₃ as a function of $T^{1/2}$ under pressure between 0.40 GPa and 0.62 GPa. The inset shows the pressure dependence of T_N inferred from ac susceptibility (\bullet) and specific heat (\bigcirc) measurements.

far below $T_0=13.5$ K. The Grüneisen parameter $\Gamma_e = -\partial \ln T_0 / \partial \ln V$ is estimated to be 220 around 0.4 GPa using the bulk modulus, $B_0=25$ GPa.¹⁶ By contrast, in $Ce_x La_x Ru_2 Si_2$ and $CeCu_{6-x} Au_x$, T_0 hardly changes near the critical boundary when the unit-cell volume is decreased by decreasing x.^{19,20}

The pressure dependence of electrical resistivity along the c axis of Ce₇Ni₃ has been reported in Ref. 16. The magnetic contribution to $\rho(T)$ from 4f electrons was estimated by using the relation, $\rho_m = \rho(\text{Ce}_7\text{Ni}_3) - \rho(\text{La}_7\text{Ni}_3)$. Near the critical pressure P = 0.39 GPa, $\rho_m(T)$ in the low-T range cannot be described by the power law.¹⁶ For $P \ge 0.66$ GPa the relation $\rho_m(T) - \rho_m(0) = AT^2$ holds as indicated by straight lines of the double-logarithmic plot in Fig. 3. The range of T^2 dependence becomes wider and the coefficient A decreases strongly with pressure as shown in the inset of Fig. 3. This result is consistent with the enlargement of the temperature range of T-independent behavior in C_m/T above 0.62 GPa, and indicates that the Fermi-liquid state becomes stable in a larger range under pressure. According to the SCR theory, apart from the critical boundary, $\rho(T)$ is expressed as

$$\rho = r \left(\frac{\pi}{8y_0^{0.5}}\right) \left(\frac{T}{T_0}\right)^2 = AT^2,$$

- ¹N. Grewe and F. Steglich, in *Handbook on the Physics and Chemistry of Rare Earths*, edited by K. A. Gschneidner, Jr. and L. Eyring (Elsevier, Amsterdam, 1991), Vol. 14, p. 343.
- ²C. L. Seaman, M. B. Maple, B. W. Lee, S. Ghamaty, M. S. Torikachvili, J.-S. Kang, L. Z. Liu, J. W. Allen, and D. L. Cox, Phys. Rev. Lett. **67**, 2882 (1991).
- ³H. Amitsuka, T. Hidano, T. Honma, H. Mitamura, and T. Sakakibara, Physica B **186&188**, 337 (1993).

FIG. 3. Double-logarithmic plot of the magnetic contribution to electrical resistivity $\rho_m(T) - \rho_m(0)$ vs T for Ce₇Ni₃ at various pressures. Solid lines represent the form $\rho_m(T) - \rho_m(0) = AT^2$. The pressure dependence of A is shown in the inset.

where *r* is an adjustable parameter.⁹ The value of *A* is expected to diverge as the critical boundary is approached. i.e., $y_0 \rightarrow 0$. This is what we observed in Ce₇Ni₃ below 0.66 GPa. This fact supports the assumption of $y_0=0$ below 0.54 GPa for the analysis of specific heat. Furthermore, the extreme depression of *A* for $P \ge 0.66$ GPa indicates the strong increase of y_0 and/or T_0 , which is consistent with the result of $T_0(P)$ deduced from the specific heat.

In conclusion, we have found that Ce₇Ni₃ is the first example of the chemically ordered compound which shows non-Fermi-liquid behavior under pressure. The crossover from the NFL state to the normal Fermi-liquid state is described by the SCR theory of spin fluctuations. The strong dependence of T_0 on the volume distinguishes this system from the alloyed systems Ce_{1-x}La_xRu₂Si₂ and CeCu_{6-x}Au_x. Furthermore, the significant increase of T_A , with decreasing the volume was suggested by the strong dependence of T_A , inelastic neutron-scattering experiment under pressure is in progress.

We wish to thank Professor T. Moriya for invaluable discussions. We thank A. Minami for the electron-probe microanalysis.

- ⁴F. G. Aliev, H. El Mfarrej, S. Vieira, and R. Villar, Solid State Commun. **91**, 775 (1994).
- ⁵H. v. Löhneysen, T. Pietrus, G. Portisch, H. G. Schlager, A. Schröder, M. Sieck, and T. Trappmann, Phys. Rev. Lett. **72**, 3262 (1994).
- ⁶F. Steglich, C. Geibel, K. Gloos, G. Olesch, C. Schank, C. Wassilew, A. Loidl, A. Krimmel, and G. R. Stewart, J. Low Temp. Phys. **95**, 3 (1994).

- ⁷S. Kambe, S. Raymond, H. Suderow, J. McDonough, B. Fak, L. P. Regnault, and J. Flouquet, Physica B 223&224, 135 (1996).
- ⁸S. Kambe, S. Raymond, J. McDonough, L. P. Regnault, J. Flouquet, P. Lejay, and P. Haen, J. Phys. Soc. Jpn. **65**, 3294 (1996).
- ⁹T. Moriya and T. Takimoto, J. Phys. Soc. Jpn. 64, 960 (1995).
- ¹⁰C. Pfleiderer, G. J. McMullan, and G. G. Lonzarich, Physica B 199&200, 634 (1994).
- ¹¹B. Bogenberger and H. v. Löhneysen, Phys. Rev. Lett. **74**, 1016 (1995).
- ¹²D. Gignoux and J. G. Gomez-Sal, J. Appl. Phys. 57, 3125 (1985).
- ¹³J. G. Sereni, O. Trovarelli, G. Schmerber, and J. P. Kappler, J. Magn. Magn. Mater. **108**, 183 (1992).
- ¹⁴J. G. Sereni, O. Trovarelli, J. P. Kappler, C. Paschke, T. Trapp-

mann, and H. v. Löhneysen, Physica B 199&200, 567 (1994).

- ¹⁵R. B. Roof, Jr., A. C. Larson, and D. T. Cromer, Acta Crystallogr. <dbxNULL>199&200, 567 (1961).
- ¹⁶K. Umeo, H. Kadomatsu, and T. Takabatake, Phys. Rev. B 54, 1194 (1996).
- ¹⁷A. Eichler and W. Gey, Rev. Sci. Instrum. **50**, 1445 (1979).
- ¹⁸H. R. O'Neal and N. E. Phillips, Phys. Rev. A 137, 748 (1965).
- ¹⁹S. Quezel, P. Burlet, J. L. Jacoud, L. P. Regnault, J. Rossat-Mignod, C. Vettier, P. Lejiay, and J. Flouquet, J. Magn. Magn. Mater. **76&77**, 403 (1988).
- ²⁰T. Pietrus, B. Bogenberger, S. Mock, M. Sieck, and H. v. Löhneysen, Physica B **206&207**, 317 (1995).