13 research outputs found

    Geographic variation in malarial parasite lineages in the Common Yellowthroat (Geothlypis trichas)

    Full text link
    Our current understanding of migration routes of many birds is limited and researchers have employed various methods to determine migratory patterns. Recently, parasites have been used to track migratory birds. The objective of this study was to determine whether haemosporidian parasite lineages detect significant geographic structure in common yellowthroats (Geothlypis trichas). We examined liver tissue or blood from 552 birds sampled from multiple locations throughout the continental United States, southern Canada, and the Bahamas. We found a 52.7% overall prevalence of haematozoan infection. We identified 86.1% of these infections to genus: 81% were Plasmodium; 5% were Haemoproteus; and 0.1% were Leucocytozoon. There were significant differences in the prevalence of different parasite genera among regions (χ2 = 36.82, P \u3c 0.0001) and in the proportion of Plasmodium infections versus other parasites among regions (χ2 = 35.52, P \u3c 0.0001). Sequence information identified three Haemoproteus lineages, two Leucocytozoon lineages, and thirteen Plasmodium lineages. Due to the low number of Haemoproteus and Leucocytozoon, only Plasmodium lineages were used in the geographic comparison of lineages. Six Plasmodium lineages were found in eight or more birds and the prevalence of these varied significantly among regions (χ2 = 172.33, P \u3c 0.0001). Additionally, 45 juvenile birds were sampled to determine what parasites could be obtained in the breeding grounds and we found only one lineage. In conclusion, parasite lineages show some geographic structure, with some lineages being more geographically specific than others, but are not useful for determining migratory connectivity in this species

    Parasitic Dinoflagellate \u3ci\u3eHematodinium perezi\u3c/i\u3e Prevalence in Larval and Juvenile Blue Crabs \u3ci\u3eCallinectes sapidus\u3c/i\u3e from Coastal Bays of Virginia

    Get PDF
    The parasitic dinoflagellate Hematodinium perezi infects the American blue crab Callinectes sapidus and other decapods along the Eastern seaboard and Gulf of Mexico coast of the USA. Large juvenile and adult blue crabs experience high mortality during seasonal outbreaks of H. perezi, but less is known about its presence in the early life history stages of this host. We determined the prevalence of H. perezi in megalopae and early benthic juvenile crabs from multiple locations along the Virginia portion of the Delmarva Peninsula. The DNA of H. perezi was not detected in any megalopae collected from several locations within the oceanic coastal bay complex in which H. perezi is found at high prevalence levels. However, prevalence levels were high in early benthic juveniles from 2 oceanic coastal embayments: South Bay and Cobb Bay. Prevalence levels were lower at locations within Chesapeake Bay, including Cherrystone Creek, Hungars Creek, and Pungoteague Creek. Sampling over different seasons and several consecutive years indicates that disease transmission occurs rapidly after megalopae settle in high-salinity bays along the Delmarva Peninsula during the late summer and fall. Infected juvenile crabs can overwinter with the parasite and, when subjected to increasing water temperatures in spring, infections progress rapidly, culminating in transmission to other crabs in late spring and early summer. In high-salinity embayments, H. perezi can reach high prevalence levels and may significantly affect recruitment of juvenile blue crabs into the adult fishery

    Variation in haematozoan parasitism at local and landscape levels in the red-billed quelea Quelea quelea

    No full text
    The red-billed quelea Quelea quelea, one of the most abundant birds in the world, presents two fundamental conundrums that we investigate here with a novel approach using blood parasite assemblages at two spatial scales, landscape and individual. The quelea of southern Africa Q. q. lathamii are split by a hypothesized migratory divide, where birds follow rain fronts in one of two directions (NW or SE). This divide is not detectable in the host population using microsatellite data, and here we show that it is also not apparent from our large-scale phylogeographical analyses of the haematozoan parasite. At a finer scale, the colourful and variable breeding plumage of male red-billed quelea has not previously shown a correlation with predictors of quality, as it does in many other bird species. The male’s breeding plumage is partially based on carotenoid colouration, the quality of which has been correlated with haematozoan infection in other bird species. However, we found no correlation between intensity of male carotenoid colouration and haematozoan infection. Our results do not contradict the hypothesis that male breeding plumage in this species serves to identify individuals rather than to indicate quality. Finally, we recovered the greatest number of haematozoan lineages from any phylogenetic survey of a single host species to date. Understanding the reasons for the extreme diversity of parasite lineages in this species may assist in explaining the success of the red-billed quelea in anthropogenic landscapes

    Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2011 - 31 January 2012

    No full text
    This article documents the addition of 473 microsatellite marker loci and 71 pairs of single-nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Barteria fistulosa, Bombus morio, Galaxias platei, Hematodinium perezi, Macrocentrus cingulum Brischke (a.k.a. M. abdominalis Fab., M. grandii Goidanich or M. gifuensis Ashmead), Micropogonias furnieri, Nerita melanotragus, Nilaparvata lugens St\ue5l, Sciaenops ocellatus, Scomber scombrus, Spodoptera frugiperda and Turdus lherminieri. These loci were cross-tested on the following species: Barteria dewevrei, Barteria nigritana, Barteria solida, Cynoscion acoupa, Cynoscion jamaicensis, Cynoscion leiarchus, Cynoscion nebulosus, Cynoscion striatus, Cynoscion virescens, Macrodon ancylodon, Menticirrhus americanus, Nilaparvata muiri and Umbrina canosai. This article also documents the addition of 116 sequencing primer pairs for Dicentrarchus labrax

    Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2011-31 January 2012

    No full text
    This article documents the addition of 473 microsatellite marker loci and 71 pairs of single-nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Barteria fistulosa, Bombus morio, Galaxias platei, Hematodinium perezi, Macrocentrus cingulum Brischke (a.k.a. M.abdominalis Fab., M.grandii Goidanich or M.gifuensis Ashmead), Micropogonias furnieri, Nerita melanotragus, Nilaparvata lugens Stal, Sciaenops ocellatus, Scomber scombrus, Spodoptera frugiperda and Turdus lherminieri. These loci were cross-tested on the following species: Barteria dewevrei, Barteria nigritana, Barteria solida, Cynoscion acoupa, Cynoscion jamaicensis, Cynoscion leiarchus, Cynoscion nebulosus, Cynoscion striatus, Cynoscion virescens, Macrodon ancylodon, Menticirrhus americanus, Nilaparvata muiri and Umbrina canosai. This article also documents the addition of 116 sequencing primer pairs for Dicentrarchus labrax
    corecore