11 research outputs found

    Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil

    Get PDF
    Biochar has been proposed as a tool to enhance phytostabilisation of contaminated soils but little data are available to illustrate the direct effect on roots in contaminated soils. This work aimed to investigate specific root traits and to assess the effect of biochar amendment on contaminant availability. Amendment with two different types of biochar, pine woodchip and olive tree pruning, was assessed in a rhizobox experiment with maize planted in a soil contaminated with significant levels of copper and arsenic. Amendment was found to significantly improve root traits compared to the control soil, particularly root mass density and root length density. Copper uptake to plants and ammonium sulphate extractable copper was significantly less in the biochar amended soils. Arsenic uptake and extractability varied with type of biochar used but was not considered to be the limiting factor affecting root and shoot development. Root establishment in contaminated soils can be enhanced by biochar amendment but choice of biochar is key to maximising soil improvement and controlling contaminant availability

    Biopsy-proven renal disease in Ile-Ife, Nigeria: A histopathologic review

    No full text
    Although various patterns of renal diseases have been reported from different renal biopsy registries worldwide, data from Nigeria remain scanty. A 10-year retrospective review of renal biopsies was conducted in our tertiary health care facility. All cases were reclassified based on their light microscopic features after the application of standard histochemical stains. A total of 165 cases were reviewed with a male:female ratio of 1.8:1 and a mean age of 15.4 ± 12.0 years. About 69.7% of the cases were below the age of 16 years, while only 2.4% were older than 50 years. The most common indications for biopsy were nephrotic syndrome (72.1%) and acute renal failure of unknown etiology (11.5%). Overall, glomerulonephritis (80%) was the most common histologic category and occurred only in individuals younger than 50 years old. Minimal change disease (22.9%) and membranoproliferative glomerulonephritis (21.9%) were the most common varieties in children, while membranous glomerulonephritis (30.6%) and focal segmental glomerulosclerosis (27.8%) were the commonest among the adult population. The initial histologic diagnosis was revised in 18 cases while a diagnosis was arrived at in seven cases initially adjudged as inadequate for assessment. This study showed that renal biopsy was predominantly performed in children and adolescents. Although glomerulonephritis was the predominant disease, the predominant histologic patterns varied with the patient age. Despite the scarcity of advanced diagnostic tools in resource-poor environments, routine use of histochemical stains is helpful in the evaluation of renal biopsies

    Sustainable Environmental Remediation Using NZVI by Managing Benefit-Risk Trade-Offs

    No full text

    Actor networks and the construction of applicable knowledge: the case of the Timbre Brownfield Prioritization Tool

    Get PDF
    This article deals with experiences acquired during the process of developing the Timbre Brownfield Prioritization Tool (TBPT). Developing a decision support tool that takes into account the expectations and experiences of its potential users is similar to creating applicable knowledge by the joint action of scientists and heterogeneous actors. Actor network theory is used to explore the construction of this form of applicable knowledge as a process of actor network creation. Following the French sociologist Callon, networks are seen to be initiated and carried out by a group of scientists (tool developers) via four moments of translation, called problematization, interessement, enrolment and mobilization. Each step in the construction of the TBPT—from the initial research question to the final model—can be linked in retrospect to changing configurations of actor networks. Based on the experiences of the tool developers in the Czech Republic, Poland, Germany and Romania, we illustrate how these configurations varied across space and time. This contribution emphasizes the ability to correlate gains in knowledge with the more visible changes in the scope of actor networks in order to highlight achievements but also limitations in acquiring applicable knowledge

    Successes and limitations of phytotechnologies at field scale : Outcomes, assessment and outlook from COST Action 859

    No full text
    Purpose : Many agricultural and brownfield soils are polluted and more have become marginalised due to the introduction of new, risk-based legislation. The European Environment Agency estimates that there are at least 250,000 polluted sites in the member states that require urgent remedial action. There is also significant volumes of wastewaters and dredged polluted sediments. Phytotechnologies potentially offer a cost-effective in situ alternative to conventional technologies for remediation of low to medium-contaminated matrices, e.g. soils, sediments, tailings, solid wastes and waters. For further development, social and commercial acceptance, there is a clear requirement for up-to-date information on successes and failures of these technologies based on evidence from the field. This review reports the outcomes from several integrated experimental attempts to address this at both field and market level in the 29 countries participating in COST Action 859. Results and discussion : This review offers insight into the deployment of promising and emergent in situ phytotechnologies, for sustainable remediation and management of contaminated soils and water, that integrative research findings produced between 2004 and 2009 by members of COST Action 859. Many phytotechnologies are at the demonstration level, but relatively few have been applied in practice on large sites. They are not capable of solving all problems. Those options that may prove successful at market level are (a) phytoextraction of metals, As and Se from marginally contaminated agricultural soils, (b) phytoexclusion and phytostabilisation of metal- and As-contaminated soils, (c) rhizodegradation of organic pollutants and (d) rhizofiltration/rhizodegradation and phytodegradation of organics in constructed wetlands. Each incidence of pollution in an environmental compartment is different and successful sustainable management requires the careful integration of all relevant factors, within the limits set by policy, social acceptance and available finances. Many plant stress factors that are not evident in short-term laboratory experiments can limit the effective deployment of phytotechnologies at field level. The current lack of knowledge on physicochemical and biological mechanisms that underpin phytoremediation, the transfer of contaminants to bioavailable fractions within the matrices, the long-term sustainability and decision support mechanisms are highlighted to identify future R&D priorities that will enable potential end-users to identify particular technologies to meet both statutory and financial requirements. Conclusions : Multidisciplinary research teams and a meaningful partnership between stakeholders are primary requirements that determine long-term ecological, ecotoxicological, social and financial sustainability of phytotechnologies and to demonstrate their efficiency for the solution of large-scale pollution problems. The gap between research and development for the use of phytoremediation options at field level is partly due to a lack of awareness by regulators and problem owners, a lack of expertise and knowledge by service providers and contractors, uncertainties in long-term effectiveness and difficulties in the transfer of particular metabolic pathways to productive and widely available plants. Networks such as COST Action 859 are highly relevant to the integration of research activity, maintenance of projects that demonstrate phytoremediation at a practical field scale and to inform potential end-users on the most suitable techniques. Biomass for energy and other financial returns, biodiversity and ecological consequences, genetic isolation and transfer of plant traits, management of plant-microorganism consortia in terrestrial systems and constructed wetlands, carbon sequestration and soil and water multi-functionality are identified as key areas that need to be incorporated into existing phytotechnologies
    corecore