143 research outputs found

    Status Report of LNS Accelerator Complex in 2002(IV. Status Report of LNS Accelerator Complex in 2002)

    Get PDF
    Operation status of an electron accelerator complex at Laboratory of Nuclear Science, Tohoku University is reported. After a completion of a new building containing an experimental vault, the inspection for the radiation safety was done in the beginning of October, 2003, so that most of user machine time was consumed in the latter half of the fiscal year 2002

    Status Report of LNS Accelerator Complex in 2001(IV. Status Report of LNS Accelerator Complex in 2001)

    Get PDF
    The electron accelerator complex at the Laboratory of Nuclear Science, Tohoku University has been operated for various fields of science. A 35-year-old 300 MeV electron linac is still working well. However troubles due to aging is rapidly getting serious. In addition, because of multi-purpose use of the linac many different beam characteristics are requested by the users, so that the operation mode has been complicate. In this report, the operation status of the accelerator complex including major troubles experienced in the fiscal year 2001 is described and future plan is shortly discussed by showing the present machine operation

    The role of ion dissolution in metal and metal oxide surface inactivation of SARS CoV-2

    Get PDF
    Funding: This work was funded by UKRI-NIHR (MRC MR/V028464/1) COVID-19 Rapid Response Initiative.Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper’s anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution per se. Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of “uncomplexed” copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.PostprintPeer reviewe

    Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-ray Scattering

    Full text link
    Metallic liquid silicon at 1787K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally-localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state.Comment: 5pages, 3 postscript figure

    Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse

    Get PDF
    Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed

    Is the 7/2^<->_<1> isomer state of ^<43>S spherical?

    Get PDF
    We report on the spectroscopic quadrupole moment measurement of the 7/2−1 isomeric state in S271643 [E∗=320.5(5)  keV, T1/2=415(3)  ns], using the time dependent perturbed angular distribution technique at the RIKEN RIBF facility. Our value, ∣Qs∣=23(3)  efm2, is larger than that expected for a single-particle state. Shell model calculations using the modern SDPF-U interaction for this mass region reproduce remarkably well the measured ∣Qs∣, and show that non-negligible correlations drive the isomeric state away from a purely spherical shape

    Bioinformatic and Genetic Association Analysis of MicroRNA Target Sites in One-Carbon Metabolism Genes

    Get PDF
    One-carbon metabolism (OCM) is linked to DNA synthesis and methylation, amino acid metabolism and cell proliferation. OCM dysfunction has been associated with increased risk for various diseases, including cancer and neural tube defects. MicroRNAs (miRNAs) are ∼22 nt RNA regulators that have been implicated in a wide array of basic cellular processes, such as differentiation and metabolism. Accordingly, mis-regulation of miRNA expression and/or activity can underlie complex disease etiology. We examined the possibility of OCM regulation by miRNAs. Using computational miRNA target prediction methods and Monte-Carlo based statistical analyses, we identified two candidate miRNA “master regulators” (miR-22 and miR-125) and one candidate pair of “master co-regulators” (miR-344-5p/484 and miR-488) that may influence the expression of a significant number of genes involved in OCM. Interestingly, miR-22 and miR-125 are significantly up-regulated in cells grown under low-folate conditions. In a complementary analysis, we identified 15 single nucleotide polymorphisms (SNPs) that are located within predicted miRNA target sites in OCM genes. We genotyped these 15 SNPs in a population of healthy individuals (age 18–28, n = 2,506) that was previously phenotyped for various serum metabolites related to OCM. Prior to correction for multiple testing, we detected significant associations between TCblR rs9426 and methylmalonic acid (p  =  0.045), total homocysteine levels (tHcy) (p  =  0.033), serum B12 (p < 0.0001), holo transcobalamin (p < 0.0001) and total transcobalamin (p < 0.0001); and between MTHFR rs1537514 and red blood cell folate (p < 0.0001). However, upon further genetic analysis, we determined that in each case, a linked missense SNP is the more likely causative variant. Nonetheless, our Monte-Carlo based in silico simulations suggest that miRNAs could play an important role in the regulation of OCM
    corecore