56 research outputs found

    Field Evaluation of Three Entomopathogenic fungi on Groundnut Pest

    Get PDF
    Entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina: Hyphomycetes), Paecilomyces fumosoroseus (Wize) (Deuteromycotina: Hyphomycetes), Verticillium lecani Viegas (Deuteromycotina: Hyphomycetes) were tested against groundnut pests, Aphis craccivora (Koch) (Homoptera: Aphididae), Aproarema modicella (Deventer) (Lepidoptera: Gelechiidae), Mylabris pustulata Faust (Coleoptera: Meloidae) and Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in field conditions. Among the tested fungi, V. lecanii suppressed 62% of A. craccivora population at 39 Days After Seedling Emergence (DASE). During the same period, B. bassiana reduced 72% of S. litura larval population (0.73 larvae). The infestation of S. litura and A. modicella were greatly reduced after the treatment of B. bassiana; subsequently the yield (1721.31 kg/ha-1) and cost benefit ratio (1: 1.93) were increased. P. fumosoroseus and V. lecanii were less effective than B. bassiana. The persistence of fungal pathogens was found to be higher in soil than the phyllosphere indicating that they can be naturally favored for the control of pests in groundnut

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients

    Cytokines and growth factors in the developing intestine and during necrotizing enterocolitis.

    No full text
    Cytokines and growth factors play diverse roles in the uninflamed fetal/neonatal intestinal mucosa and in the development of inflammatory bowel injury during necrotizing enterocolitis (NEC). During gestational development and the early neonatal period, the fetal/premature intestine is exposed to high levels of many inflammatory cytokines and growth factors, first via swallowed amniotic fluid in utero and then, after birth, in colostrum and mother\u27s milk. This article reviews the dual, seemingly counter-intuitive roles of cytokines, where these agents play a trophic role and promote maturation of the uninflamed mucosa, but can also cause inflammation and promote intestinal injury during NEC

    All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2.

    No full text
    We have shown previously that preterm infants are at risk of necrotizing enterocolitis (NEC), an inflammatory bowel necrosis typically seen in infants born prior to 32 weeks' gestation, because of the developmental deficiency of transforming growth factor (TGF)-β2 in the intestine. The present study was designed to investigate all-trans retinoic acid (atRA) as an inducer of TGF-β2 in intestinal epithelial cells (IECs) and to elucidate the involved signaling mechanisms.AtRA effects on intestinal epithelium were investigated using IEC6 cells. TGF-β2 expression was measured using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Western blots. Signaling pathways were investigated using Western blots, transiently-transfected/transduced cells, kinase arrays, chromatin immunoprecipitation, and selective small molecule inhibitors.AtRA-treatment of IEC6 cells selectively increased TGF-β2 mRNA and protein expression in a time- and dose-dependent fashion, and increased the activity of the TGF-β2 promoter. AtRA effects were mediated via RhoA GTPase, Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1), p38α MAPK, and activating transcription factor (ATF)-2. AtRA increased phospho-ATF2 binding to the TGF-β2 promoter and increased histone H2B acetylation in the TGF-β2 nucleosome, which is typically associated with transcriptional activation.AtRA induces TGF-β2 expression in IECs via RhoA- and p38α MAPK-mediated activation of the transcription factor ATF2. Further studies are needed to investigate the role of atRA as a protective/therapeutic agent in gut mucosal inflammation

    Both ROCK1 and p38α MAPK are required for atRA-mediated phosphorylation of ATF2 in IECs.

    No full text
    <p><b><i>A</i>.</b> Western blots show the effect of the ROCK inhibitor Y-27632 on the expression of cleaved ROCK1, phospho-p38, phospho-MAPKAPK2, and phospho-ATF2. Β-actin was used as the loading control. <b><i>B</i>.</b> Effect of the p38 inhibitor SB203580 on the expression of cleaved ROCK1, phospho-p38, phospho-MAPKAPK2, and phospho-ATF2. Data represent 3 separate experiments. <b><i>C</i>.</b> Bar-diagrams (means ± SE) summarize ROCK activity in IEC6 cells treated with atRA (10 μM, top panel), with Y-27632 (10 μM) followed by atRA (10 μM; middle panel), and SB203580 (10 μM) followed by atRA (10 μM; bottom panel). Data represent 3 separate experiments; * <i>p</i><0.05, ** <i>p</i><0.01, *** <i>p</i><0.001.</p
    • …
    corecore