6 research outputs found

    Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests

    Get PDF
    For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (â©œ20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0–7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps

    Lessons from a regional analysis of forest recovery trajectories in West Africa

    No full text
    In West Africa, very poorly documented are the recovery trajectories of secondary forests, and even less is known about the origin of the observed variability in recovery rates. To understand the relative importance of local and regional environmental conditions on these trajectories, we inventoried all trees larger than 2.5 cm DBH on 236 plots (0.2 ha), aged from 0 to 45 years plus controls, on eight chronosequences representing the typical regional North-South climatic gradient of West Africa. In a hierarchical Bayesian framework, we modelled recovery trajectories of biodiversity, aboveground biomass and floristic composition and tested the influence of variability in local (plot history, landscape context, remnant trees) and regional (climate and soil) conditions on recovery rates. Our results show that (a) diversity recovers faster than composition and biomass, (b) among the local variables, the number of remnant trees has a positive impact on recovery rates while the duration of agricultural cultivation has a negative impact, and (c) among the regional variables, the high seasonality of precipitation and climate, typical of the dry forests of the northern West African forest zone, leads to faster secondary successions. Our simulation approaches have indicated that poor regional conditions can be counterbalanced by adequate local conditions and vice versa, which argues strongly in favour of a diagnosis that integrates these two aspects in the choice of more or less active technical itineraries for forest restoration

    Multidimensional tropical forest recovery

    No full text
    Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values. Recovery to 90% of old-growth values is fastest for soil (12 decades). Network analysis shows three independent clusters of attribute recovery, related to structure, species diversity, and species composition. Secondary forests should be embraced as a low-cost, natural solution for ecosystem restoration, climate change mitigation, and biodiversity conservation

    Multidimensional tropical forest recovery

    No full text
    Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values. Recovery to 90% of old-growth values is fastest for soil (12 decades). Network analysis shows three independent clusters of attribute recovery, related to structure, species diversity, and species composition. Secondary forests should be embraced as a low-cost, natural solution for ecosystem restoration, climate change mitigation, and biodiversity conservation
    corecore