424 research outputs found

    Spin-Orbit Force from Lattice QCD

    Get PDF
    We present a first attempt to determine nucleon-nucleon potentials in the parity-odd sector, which appear in 1P1, 3P0, 3P1, 3P2-3F2 channels, in Nf=2 lattice QCD simulations. These potentials are constructed from the Nambu-Bethe-Salpeter wave functions for J^P=0^-, 1^- and 2^-, which correspond to A1^-, T1^- and T2^- + E^- representation of the cubic group, respectively. We have found a large and attractive spin-orbit potential VLS(r) in the isospin-triplet channel, which is qualitatively consistent with the phenomenological determination from the experimental scattering phase shifts. The potentials obtained from lattice QCD are used to calculate the scattering phase shifts in 1P1, 3P0, 3P1 and 3P2-3F2 channels. The strong attractive spin-orbit force and a weak repulsive central force in spin-triplet P-wave channels lead to an attraction in the 3P2 channel, which is related to the P-wave neutron paring in neutron stars.Comment: 14 pages, 5 figures, Physics Letters B published versio

    Kaon-Nucleon potential from lattice QCD

    Full text link
    We study the KN interactions in the I(J^{\pi})=0(1/2^-) and 1(1/2^-) channels and associated exotic state \Theta^+ from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to m_{\pi}=871 MeV. The s-wave KN potentials are obtained from the Bethe-Salpeter wave function by using the method recently developed by HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) Collaboration. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I=1 potential, which is consistent with the prediction of the Tomozawa-Weinberg term. The I=0 potential is found to have attractive well at mid range. From these potentials, the KNKN scattering phase shifts are calculated and compared with the experimental data.Comment: Talk given at 19th International IUPAP Conference on Few-Body Problems in Physics (fb19), Bonn, Germany, 30 Aug - 5 Sep 200

    Colossal electroresistance and colossal magnetoresistive step in paramagnetic insulating phase of single crystalline bilayered manganite(La0.4_{0.4}Pr0.6_{0.6})1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7}

    Get PDF
    We report a significant decrease in the low-temperature resistance induced by the application of an electric current on the abab-plane in the paramagnetic insulating (PMI) state of (La0.4_{0.4}Pr0.6_{0.6})1.2_{1.2}Sr1.8_{1.8}Mn2_{2}O7_{7}. A colossal electroresistance effect attaining -95% is observed at lower temperatures. A colossal magnetoresistive step appears near 5T at low temperatures below 10K, accompanied by an ultrasharp width of the insulator-metal transition. Injection of higher currents to the crystal causes a disappearance of the steplike transition. These findings have a close relationship with the presence of the short-range charge-ordered clusters pinned within the PMI matrix of the crystal studied.Comment: 4 pages 3 figure

    Mirage in Temporal Correlation functions for Baryon-Baryon Interactions in Lattice QCD

    Get PDF
    Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for the system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ\Xi\Xi and NNNN), and three and four baryons (3He^3{\rm He} and 4He)^4{\rm He}) as well, employing (2+1)-flavor lattice QCD at mπ=0.51m_{\pi}=0.51 GeV on four lattice volumes with L=L= 2.9, 3.6, 4.3 and 5.8 fm. Caution is given for drawing conclusion on the bound NNNN, 3N3N and 4N4N systems only based on the temporal correlation functions.Comment: 32 pages, 13 figures, minor corrections, published version, typos correcte

    Baryon-Baryon Interactions from Lattice QCD

    Full text link
    We report on new attempt to investigate baryon-baryon interactions in lattice QCD. From the Bethe-Salpeter (BS) wave function, we have successfully extracted the nucleon-nucleon (NNNN) potentials in quenched QCD simulations, which reproduce qualitative features of modern NNNN potentials. The method has been extended to obtain the tensor potential as well as the central potential and also applied to the hyperon-nucleon (YNYN) interactions, in both quenched and full QCD.Comment: 6 pages, 10 figures, A plenary talk given at the 5-th International Conference on Quark and Nuclear Physics, Beijing, September 21-26, 200

    What Do Grades Mean? Variation in Grading Criteria in American College and University Courses

    Get PDF
    This study examined differences in the criteria used by college and university instructors in the United States to assign course grades. Two hundred and fifty course syllabi (159 from universities and 91 from four-year colleges) developed by randomly selected instructors from five academic disciplines (education, maths, science, psychology, and English) were examined to determine the extent to which instructors employed different criteria in assigning course grades in introductory-level courses. Sources of variation in grade assignment included the use of product versus process criteria, the prevalence of using performance exams, and the framing criteria for grades. Differences between institution types and among academic disciplines were also investigated. Results revealed significant differences among the five academic disciplines in grading criteria and the use of examinations, with instructors in education and English relying more heavily on process criteria. A significant interaction between institution type and academic discipline in grading criteria was also identified. Theoretical, practical, and policy implications are discussed along with avenues for further research

    Modification of HF-treated silicon (100) surfaces by scanning tunneling microscopy in air under imaging conditions

    Get PDF
    The modification of HF-etched silicon (100) surface with a scanning tunneling microscope(STM) operated in air is studied for the first time in samples subjected to the standard HF etching without the follow-up rinsing in H2O. The modifications are produced in air under normal STM imaging conditions (V t =−1.4 V and I t =2 nA). The simultaneous acquisition of topographical, current image tunneling spectroscopy and local barrier-height images clearly shows that the nature of the modification is not only topographical but also chemical. The features produced with a resolution better than 25 nm are attributed to a tip-induced oxidation enhanced by the presence of fluorine on the surface
    corecore