23,451 research outputs found

    The Circuit Split on Title VII Personal Supervisor Liability

    Get PDF
    This Note examines the competing rationales for and against individual supervisor liability under Title VII, and concludes that supervisor liability is the better reasoned view. It explains how courts construe the term employer to either allow or disallow direct supervisor liability. It discusses the rationales for and against individual supervisor liability. It concludes that individual supervisor liability is the better reasoned view, on construction, policy and comparative grounds, and proposes joint and several liability for supervisors and employers in all Title VII cases, which will clarify when respondeat superior liability is appropriate under Title VII. This proposal will deter Title VII violations, remedy plaintiffs appropriately and protect employers from undue vicarious liability

    Geometry modeling and multi-block grid generation for turbomachinery configurations

    Get PDF
    An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation

    Nucleon and Delta resonances in K Sigma(1385) photoproduction from nucleons

    Full text link
    The reaction mechanisms for KΣ(1385)K\Sigma(1385) photoproduction from the reaction γp→K+Σ0(1385)\gamma p \to K^+\Sigma^{0}(1385) in the resonance energy region are investigated in a hadronic model. Both contributions from NN and Δ\Delta resonances of masses around 2 GeV as given in the Review of Particle Data Group and by the quark model predictions are included. The Lagrangians for describing the decays of these resonances into KΣ(1385)K\Sigma(1385) are constructed with the coupling constants determined from the decay amplitudes predicted by a quark model. Comparing the resulting total cross section for the reaction γp→K+Σ0(1385)\gamma p \to K^+\Sigma^{0}(1385) with the preliminary data from the Thomas Jefferson National Accelerator Facility, we find that the most important contributions are from the two-star rated resonances Δ(2000)F35\Delta(2000) F_{35}, Δ(1940)D33\Delta(1940) D_{33}, and N(2080)D13N(2080) D_{13}, as well as the missing resonance N32−(2095)N\frac32^-(2095) predicted in the quark model. Predictions on the differential cross section and photon asymmetry in this reaction are also given.Comment: 13 pages, 6 figures, REVTeX, to appear in Phys. Rev.

    Dominant Superconducting Fluctuations in the One-Dimensional Extended Holstein-Extended Hubbard model

    Get PDF
    The search for realistic one-dimensional (1D) models that exhibit dominant superconducting (SC) fluctuations effects has a long history. In these 1D systems, the effects of commensurate band fillings--strongest at half-filling--and electronic repulsions typically lead to a finite charge gap and the favoring of insulating density wave ordering over superconductivity. Accordingly, recent proposals suggesting a gapless metallic state in the Holstein-Hubbard (HH) model, possibly superconducting, have generated considerable interest and controversy, with the most recent work demonstrating that the putative dominant superconducting state likely does not exist. In this paper we study a model with non-local electron-phonon interactions, in addition to electron-electron interactions, this model unambiguously possesses dominant superconducting fluctuations at half filling in a large region of parameter space. Using both the numerical multi-scale functional renormalization group for the full model and an analytic conventional renormalization group for a bosonized version of the model, we demonstrate the existence of dominant superconducting (SC) fluctuations. These dominant SC fluctuations arise because the spin-charge coupling at high energy is weakened by the non-local electron-phonon interaction and the charge gap is destroyed by the resultant suppression of the Umklapp process. The existence of the dominant SC pairing instability in this half-filled 1D system suggests that non-local boson-mediated interactions may be important in the superconductivity observed in the organic superconductors.Comment: 8 pages, 4 figure

    Entanglement Property and Monogamy Relation of Gerneralized Mixed W

    Full text link
    We introduce a new class of multipartite entangled mixed states with pure state decompositions of generalized W states, similar to Schmidt-correlated states having generalized GHZ states in the pure state decomposition. The entanglement and separability properties are studied according to PPT operations. Monogamy relations linked to these states are also investigated.Comment: 8 page
    • …
    corecore