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ABSTRACT

An interactive three-dimensional grid generation code, TIGER (Turbomachinery Interactive

Grid genERation) has been developed for general turbomachinery configurations. TIGER fea-

tures the automatic generation of multi-block structured grids around multiple blade rows for

either internal, external or internal-external turbomachmery flow fields. Utilization of the Bezi-

er's curves achieves a smooth grid and better orthogonality. A graphic environment utilizing

FORMS Library serves as the interface on the Silicon Graphics Inc. (SGI) IRIS 4D platforms.

Based on the geometry information with its built-in pseudo-AI algorithm, TIGER generates the

algebraic grid automatically. However, due to the large variation of turbomachinery configura-

tions, this imtial grid may not always be as good as desired. TIGER therefore provides graphical

user interactions during the process which allow the user to design, modify, as well as mampu-

late the grid, including the capability of elliptic surface grid generation.

The computational mapping, geometry modeling, and the user-interactions are the the main

procedures of TIGER. This presentation will cover these issues associated with general turbo-

machinery geometries. Various examples have been exercised to demonstrate the success of the

developed algorithm.
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INTRODUCTION

During the last decade, computational fluid dynamics (CFD) has evolved as an essential

technique for solving engineering problems associated with flow fields. CFD allows greater ac-

curacy and improves the time-cost efficiency. Applications of CFD are now pratical on the

flow field predictions for very complex geometries such as full scale aircrafts, counter-rotating

propfans, and coastlines. CFD developments also help the numerical prediction on magnetic

field and bio-chemistry. Great advances can be found in the flow field prediction associated

with turbomachinery configurations. Acoustic prediction with CFD methods is currently an

important issue in turbomachinery applications since environmental problems become the focus

of the public. However, due to the complexity of the geometry, numerical grid generation

associated with the flow field about turbomachinery systems is difficult and time-consuming.

Even with the advances in the general purpose, interactive grid generation codes like GE-

NIE 1,2,3,4 and EAGLEView 5'6'7, it is still a labor-inter_sive task to generate a grid for such ap-

plications which have large variations in design. As a consequence, there arises a strong demand

for a grid generation tool to generate quality grids for a large variety of designs of the turbomachin-

ery configurations in a time-efficient manner.

TIGER 7,8,9,10, an interactive grid generation code customized for turbomachinery applica-

tions, has been developed to meet this demand. The overall objective of TIGER was to develop

an efficient and robust computational grid generation system tailored for complex turbomachin-

ery applications that would be timely enough for engineering designs using computational fluid

dynamics. It is written in both Fortran-77 and C languages, with Fortran routines doing most of

the mathematical calculations and C routines driving the graphic interfaces. The graphic inter-

face is an application of the FORMS Library 11 which is a graphical user interface toolkit appli-

cable to the SGI IRIS 4D platforms. Figure 1-a is the main panel of the user interface with

graphic window. Figure 1-b is an option panel for blade information inputs. TIGER is current-

ly capable of generating structured grids for internal, external, and internal-external flow fields

about turbomachinery systems. With a simple switch, the user is able to choose the preferred

grid topology. TIGER automatically maps the physical configuration into the computational do-

main. It reads in various industrial geometry definitions for the solid entities, such as the blades,

the hub/spinner and the duct/shroud from the data files in the form of discreted data points.

Built-in geometry manipulators in TIGER will revolve, intersect, spline and generate the grid

for these surfaces in sequence. Graphical user interactions allow the user to design and manipu-

late the grid mesh with mouse buttons and the graphic entities on the screen. After the boundary

surfaces have all been generated, algebraically or with user's manipulation, the grid generation

for each sub-block will take place with the default transfinite interpolation (TFI) or with the el-

liptic solver system.

CONSTRUCTING PROCEDURES

There are three major procedures in TIGER during the construction of the grid. They are

(1) Computational Mapping, which controls the mapping from the physical domain into the
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computationaldomain;(2)GeometryModeling,whichcontainsseveralgeometrymanipulation
routines,suchasbodyof revolution,intersectionof two surfaces,andcurve/surfacespline;and
(3) UserInteractions,whichallow theuserto design,modify,or manipulatethegrid meshinter-
actively.

ComputationalMapping

Theestablishmentof amappingfrom thephysicaldomainto thecomputationaldomainis
thefirst steptowardthegenerationof thenumericalgrid. Thiscanbeaccomplishedby dividing
acomplex3D flow field into acollectionof contiguous,simplyconnectedblocksfilled with dis-
cretedpoints. Eachof thesolid surfacesformsthefull or partialsidesin acomputationalblock.
Figure2-a is atypicaltwo-block propfanapplication,andfigure2-b is thecomputationalmap-
ping for suchasystem.

Varioustypesof grid topologyareavailablein TIGER. If weusethedesignation"CH" to
indicateC-type grid for theoverallconfiguration,andH-type gridfor thegrid aroundthe
blades,therearetwo typesof grid topologyavailableto date.TheyareHH andCH types. HC
andCC typesof grid arecurrentlyunderdevelopment.With acomprehensiveinput from the
graphicalinterfaceor throughthejournalfile, theusercanchoosethepreferredtopology. Based
on this input,TIGERautomaticallymapsthephysicaldomaininto thecomputationaldomain,
andrequeststheuserto provideappropriateinformationthroughtheinterfaceor thejournal file.

GeometryModeling

Geomelrymodelingisconsideredasthemostdelicatepartof thewholeprocess.Wemust
paycloseattentionto preservethedefinitionsof thegeometrysurfaces,suchasthebladesand
thehub,duringthemanipulationsof thesesurfaces.Cubicsplineis themostcommontechnique
usedto splinethecurvesor surfacesto thedesirednumberof pointsandpoint distribution. Cu-
bicsplineusuallygivesa verysatisfactoryresultfor asmoothcurveorsurface.However, it suf-
fersthedefectsof introducingwigglesfor acurvewith largecurvaturechange.If thefree-end
boundaryconditionis appliedto thecubicspline,it is difficult for thecurveto keepits slopeat
theends.

InversedB-Spline12,13algorithms,developedby YoonandThompsonandlatermodifiedby
YuandSoni,areusedfor spliningcurvesandaregoingto beusedfor spliningsurfacesin TI-
GERto avoidtheproblemscausedby thecubicspline.Thissplinetechniquecalculatesthecon-
trol verticesof anexistingcurve/surface(inversecalculation),andallowstheuserto input anew
numberof pointsanda newdistribution;henceit allowstheusertheability to re-splinethe
curve/surfaceto thedesiredmeshwithout loosingthedefinition. It alsokeepsthe3rdorder
smoothnessof thecurve/surface,viz., it hascontinuoussecondderivatives.
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Due to the geometrical characteristic of the turbomachinery being axisymmeWic, it provides

the advantage to simplify the transformation between the 3D revolved surfaces into 2D surfaces.

A simple transformation law may be expressed as the following.

=NI -m = i=2 _i

where a i = v/-(zi---z_)_-t) 2 + (r i - ri_l) 2

(1)

a = Or., (2)

where r,, is the reference radius

The inverse transformation from (m,o) into (Z,R,O) is done with the aid of the B-spline al-

gorithm.

User Interactions

It is the goal of TIGER to generate the smooth algebraic glad automatically with very few

user inputs. However, it is not practical to expect a grid generation code that is smart enough to

generate the grid automatically without any need for modification for any design of the turboma-

chinery configurations, because that there are too many variations in terms of configuration de-

sign. Therefore, certain user interactions must be provided for the user to modify minor portions

of the grid to achieve the favorable grid. With this in mind, TIGER features three interactave

procedures, which give the user the freedom to design their favorable grids. These interactions

are to (1) design the "ruler lines"; (2) design the "segment curves"; and (3) manipulate the sur-

faces. They will be discussed in detail later.

Bezier curve/surface formulation plays a very important role in these interactions. A bi-

cubic Bezier's surface can be expressed as

ttl n

/'(U, V) = E E Pij n?(/,/) nj(v), (3)

i=0 j=0

where Brf(u) is Bemstein Polynomial of degree m,
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BT_(u) = (7 _ ) (1 - u) m-j u I (4)

and m, n are the numbers of Bezier points in u,v direction, respectively

0_ug 1 ,0_v_ 1

Set n = 0, then Eq. (3) becomes

m

= p, B?(u)
i=0

(5)

The Bezier's algorithm in TIGER was programmed according to Eq. 3, viz., it is general-

ized for any degree of Bezier's surfaces. However, TIGER only applies Eq. 5 in its algorithm.

Bezier's curve is used heavily in TIGER due to two of its important properties, which

makes it very useful in grid generation:

m m

tl). _"_i=°Bi (u) = 1 which implies that the Bezier curve is invariant under translation

and rotation. In other words, the curve is independent of the choice of coordinate system.

(2). _(0) = cp (Pl - P0) and /'(1) = _ (Pn - Pn- 1) where _, _ are scalars.

This property implies that the Bezier curve expresses the tangents at the end points in terms of

difference with the Bezier control points Pl and Pn-l, respectively, multiplied by constants _ and

Design of the "Ruler Lines"

A "ruler line", or "ruler" in short, is nothing but a grid line with constant J-indice. Graphi-

cally, TIGER allows the user to use the mouse buttons and graphic entities shown on the screen

to "design" the rulers on the meridional surface, i.e. (Z,R) plane, with the Bezier's curve. Once

this process is done, the grid generated later in the process will fall into this user--designed trend.

TIGER keeps the design process executed by the user into a file in pseudo code format, which

allows later reactment. In other words, the user does not need to go through the same process if

nothing is changed in this part.
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Design of the "Segment Lines"

Similar to the process of designing rulers, this step also allows the user to design the ruler

line in segment with the graphical interaction provided by TIGER. It designs segments, howev-

er, in (re,o) plane instead of (Z,R) plane. It therefore assigns the third coordinates 0 to the ruler

line on the segment basis. User also has to provide the point distribution information during this

step for each of the segments.

Surface Manipulation

TIGER generates the surface grid with TFI for each of the surfaces. It may not, however,

be the most favorable grid to the user. Therefore, TIGER features the interactive surface manip-

ulation, which allows the user to manipulate the surface with Bezier's curves, elliptic solver, av-

eraging relaxation, and other techniques. A graphic panel with buttons and counters is pro-

vided for the user to access those functions easily. To date, such surface manipulation is

available for cascade surfaces_ i.e. J--constant surfaces. A user may localize the manipulation to

an interactively defined zone.

GRID GENERATION

TIGER generates the initial grid by default with the algebraic TFI technique for each sur-

face patch and sub-block. The axiom for dividing the surface patches and volume blocks is de-

cided automatically by an algorithm tracing the critical indices. TIGER converts all of the coor-

dinates into cylindrical coordinates; it matters not if the geometry definition is expressed in

Cartesian coordinates or cylindrical coordinates. The reason for keeping the coordinates in a cy-

lindrical system is due to the physical axisymmetricity of the turbomachinery. To generate the !

surface patches on the hub, for example, if we do the transfinite surface interpolation based on

the information from the four boundaries of the surface, we, very likely, are going to loose the

geometry definition of the hub, and the surface will turn out to be a surface composed of various

"dips" and "bumps". This is definitely not the one we are looking for. It takes additional proce-

dures, such as projection, to bring the transfinite surface back to the axisymmetric hub surface.

However, with the transfinite interpolation done in the cylindrical coordinates, the result is very

satisfactory. As stated above in the surface manipulation, TIGER also carries the elliptic grid

generation algorithm. This is done by transforming the grid from (Z,R,0) into (m,o), and, after

the elliptic iterations, the grid is transformed inversly back to cylindrical coordinates.

Similar methodology applies to the volume grid generation. The default algebraic grid by TFI

is also done in cylindrical coordinates. However, if the grid somehow shows negative Jacobians

due to the complexity of the geometry design, 3D Laplace/Poisson elliptic iterations may be

performed to smooth out the grid and eliminate the negative Jacobians.
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EXAMPLES

Todate,TIGERhasgeneratedgridsfor variousconfigurationssuchassinglerotationprop-
fans,counter-rotationpropfans,ductedpropfans,rotors-stators,andmarinepropellers.Three
configurationsarepresentedin thisabslractasexamplesfor internal,external,andinternal-ex-
ternalflow fields, respectively.

The first example is the NASA Lewis single-stage transonic axial flow ROTOR-67 config-

uration with 22 rotor blades and 33 stator blades. This is an example of an internal flow field.

The flow field is decomposed into two blocks, with a 49x21 x25 grid for the rotor block, and a

45x21x17 grid for the stator block. HH grid type is used due to the physical domain. Figure 3-a

is the solid image for this geometry. Figure 3-b is the grid mesh behavior on K= 1 surface. Fig-

ure 3-c is the J-- Jmax surface, i.e. the grid mesh on the outer shroud. Note that there is discon-

tinuity between the rotor blocks and the stator blocks. This is due to the fact that these blocks

will be rotated against each other to simulate the physical rotation; it is not necessary to link the

grid between these two blocks since the Euler flow solver TURBO 14 developed by Mississippi

State University will link the grid lines at each time step.

The second example is an external flow field case, a GE counter-rotation propfan with

F4-A4 blade design with 8x8 blade count. The physical domain is decomposed into two blocks

with 61x36x16 grid points for the front blade block and 61x36x16 grid points for the rear blade

block. Figure 4-a is the solid image for this configuration. Figure 4-b is the grid mesh behavior

for K--1 surface. Figure 4-c is the surface grid on the hub, namely, J=l surface.

The third example is the NASA Lewis 1.15 Pressure Ratio Fan with 12 rotor blades and 32

stator blades, which is an internal-external flow field. This geometry is decomposed into four

blocks with an approximate grid size of 200,000 grid points for a passage. A narrow gap be-

tween the rotor and the lower surface of the duct is simulated with 4 grid cells in between. Fig-

ure 5-a is its solid image. Figure 5-b is the grid mesh for K=I surface, with a closeup image in

figure 5-c. Note that the axial grid lines between the rotor blade tip and the lower duct surface

remain near the duct surface and spray out from the leading edge and trailing edge of the duct.

The reason for keeping grid lines from spraying off the duct surface before they leave the duct is

that it will be easy to generate a viscous grid without too much user interaction.
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Figure 1-a TIGER's main panel

Figure 1-b Option panel for blade information inputs
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Figure 2-b Typical Computational Domain of a Two-Block Propfan Passage
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Figure 3-a ROTOR-67 Solid Image
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Figure 3-b K=I Surface for ROTOR-67

Figure 3-c Mesh on the Shroud
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Figure 4-a Counter-Rotation Propfan

Figure 4-b Grid Surface on K=I Surface

I

Figure 4-c Surface Grid on the Hub
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Figure 5-a 1.15 Pressure Ratio Fan

i

Figure 5-b K=I Surface Grid

Figure 5-c Closeup Grid for K=I Surface
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