256 research outputs found

    Improvement of Surface Accuracy and Shop Floor Feed Rate Smoothing Through Open CNC Monitoring System and Cutting Simulation

    Get PDF
    AbstractIn the milling process of complex workpiece shapes the feed rate normally becomes instable due to the high degree of surface curvature that requires high acceleration and deceleration of the interpolated axes. This condition impacts on process time and on the surface accuracy regarding the manufactured part form and texture. The challenge to simulate the real machine and control behavior requires accurate models with a set of experiments to tune and dimension the model to the respective machine tool. The aim is to improve the HSC milling process of complex surfaces before removing any material. In this paper experiments show that the surface form accuracy and texture can be optimized through an automatic feed rate smoothing of the finishing operation directly on the machine tool. The axis positions and spindle speeds monitored through the open CNC are used as input for a geometric cutting simulation, thus enabling to predict and optimize the surface quality

    Structural properties and superconductivity of SrFe2As2-xPx and CaFe2As2-yPy

    Full text link
    The SrFe2As2-xPx and CaFe2As2-yPy materials were prepared by a solid state reaction method. X-ray diffraction measurements indicate the single-phase samples can be successfully obtained for SrFe2As2-xPx and CaFe2As2-yPy samples. Clear contraction of the lattice parameters are clearly determined due to the relatively smaller P ions substation for As. The SDW instability associated with tetragonal to orthorhombic phase transition is suppressed visibly in both systems following with the increase of P contents. The highest superconducting transitions are respectively observed at about 27 K in SrFe2As1.3P0.7 and at about 13 K in CaFe2As1.7P0.3.Comment: 11 pages, 5 figures, 2 table

    Towards a Unified Description of the Rheology of Hard-Particle Suspensions

    Get PDF
    The rheology of suspensions of Brownian, or colloidal, particles (diameter d≲1d \lesssim 1 μ\mum) differs markedly from that of larger grains (d≳50d \gtrsim 50 μ\mum). Each of these two regimes has been separately studied, but the flow of suspensions with intermediate particle sizes (1 μm≲d≲50\mu\textrm{m} \lesssim d \lesssim 50 μ\mum), which occur ubiquitously in applications, remains poorly understood. By measuring the rheology of suspensions of hard spheres with a wide range of sizes, we show experimentally that shear thickening drives the transition from colloidal to granular flow across the intermediate size regime. This insight makes possible a unified description of the (non-inertial) rheology of hard spheres over the full size spectrum. Moreover, we are able to test a new theory of friction-induced shear thickening, showing that our data can be well fitted using expressions derived from it.Comment: 5 page

    Hitting the Jackpot – development of gas chromatography–mass spectrometry (GC–MS) and other rapid screening methods for the analysis of 18 fentanyl-derived synthetic opioids

    Get PDF
    © 2020 John Wiley & Sons, Ltd. In recent years, the occurrence of synthetic opioid fentanyl and its derivatives has grown significantly in forensic casework. This study presents the synthesis and analysis of 18 fentalogs, selected based on information received from local law enforcement. This study provides colorimetric tests, thin-layer chromatography (TLC) which can potentially be utilized for presumptive screening of the target compounds, as bulk powders or as trace-level adulterants. The fully validated confirmatory GC–MS method (employing SIM mode) allows the identification of the 18 derivatives, five commonly encountered controlled substances and four adulterants, within 20 minutes. The cross-validated method described herein provides a sensitive screening and quantitation method for the illicit (and potentially harmful) components at trace levels (LOD = 0.007–0.822 μg/mL and LOQ = 0.023–2.742 μg/mL respectively). Spectral data [1H-NMR, 13C-NMR, 19F-NMR, FT-IR, and HRMS] and assignments for the synthesized reference materials are also provided in the Supplementary Information for laboratories engaged in the routine analysis of fentanyl and its derivatives

    Complex Fluids and Hydraulic Fracturing

    Get PDF
    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process

    Improving the hyperpolarization of (31)p nuclei by synthetic design

    Get PDF
    Traditional (31)P NMR or MRI measurements suffer from low sensitivity relative to (1)H detection and consequently require longer scan times. We show here that hyperpolarization of (31)P nuclei through reversible interactions with parahydrogen can deliver substantial signal enhancements in a range of regioisomeric phosphonate esters containing a heteroaromatic motif which were synthesized in order to identify the optimum molecular scaffold for polarization transfer. A 3588-fold (31)P signal enhancement (2.34% polarization) was returned for a partially deuterated pyridyl substituted phosphonate ester. This hyperpolarization level is sufficient to allow single scan (31)P MR images of a phantom to be recorded at a 9.4 T observation field in seconds that have signal-to-noise ratios of up to 94.4 when the analyte concentration is 10 mM. In contrast, a 12 h 2048 scan measurement under standard conditions yields a signal-to-noise ratio of just 11.4. (31)P-hyperpolarized images are also reported from a 7 T preclinical scanner

    Suppression of Jasmonic Acid-Dependent Defense in Cotton Plant by the Mealybug Phenacoccus solenopsis

    Get PDF
    The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA), salicylic acid (SA), and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs

    Leaf colour as a signal of chemical defence to insect herbivores in wild cabbage (Brassica Oleracea)

    Get PDF
    Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour

    Jasmonic Acid-Induced Changes in Brassica oleracea Affect Oviposition Preference of Two Specialist Herbivores

    Get PDF
    Jasmonic acid (JA) is a key hormone involved in plant defense responses. The effect of JA treatment of cabbage plants on their acceptability for oviposition by two species of cabbage white butterflies, Pieris rapae and P. brassicae, was investigated. Both butterfly species laid fewer eggs on leaves of JA-treated plants compared to control plants. We show that this is due to processes in the plant after JA treatment rather than an effect of JA itself. The oviposition preference for control plants is adaptive, as development time from larval hatch until pupation of P. rapae caterpillars was longer on JA-treated plants. Total glucosinolate content in leaf surface extracts was similar for control and treated plants; however, two of the five glucosinolates were present in lower amounts in leaf surface extracts of JA-treated plants. When the butterflies were offered a choice between the purified glucosinolate fraction isolated from leaf surface extracts of JA-treated plants and that from control plants, they did not discriminate. Changes in leaf surface glucosinolate profile, therefore, do not seem to explain the change in oviposition preference of the butterflies after JA treatment, suggesting that as yet unknown infochemicals are involved

    Two distinct catalytic pathways for GH43 xylanolytic enzymes unveiled by X-ray and QM/MM simulations

    Get PDF
    Xylanolytic enzymes from glycoside hydrolase family 43 (GH43) are involved in the breakdown of hemicellulose, the second most abundant carbohydrate in plants. Here, we kinetically and mechanistically describe the non-reducing-end xylose-releasing exo-oligoxylanase activity and report the crystal structure of a native GH43 Michaelis complex with its substrate prior to hydrolysis. Two distinct calcium-stabilized conformations of the active site xylosyl unit are found, suggesting two alternative catalytic routes. These results are confirmed by QM/MM simulations that unveil the complete hydrolysis mechanism and identify two possible reaction pathways, involving different transition state conformations for the cleavage of xylooligosaccharides. Such catalytic conformational promiscuity in glycosidases is related to the open architecture of the active site and thus might be extended to other exo-acting enzymes. These findings expand the current general model of catalytic mechanism of glycosidases, a main reaction in nature, and impact on our understanding about their interaction with substrates and inhibitors
    • …
    corecore