126 research outputs found

    J. J. Tikkanen

    Get PDF

    Ett par arbeten av Johan Petter Berg

    Get PDF

    UV albedo of arctic snow in spring

    No full text
    International audienceThe relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV) albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67.37° N, 26.63° E, 179 m a.s.l.) during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period and 0.5?0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1?2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again

    Diurnal variations in the UV albedo of arctic snow

    Get PDF
    The relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV) albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67°22'N, 26°39'E, 179 m a.s.l.) during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period, and from 0.5 to 0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1–2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again

    Antarctic network of lamp-calibrated multichannel radiometers for continuous ozone and uv radiation data

    Get PDF
    International audienceThree NILU-UV multichannel radiometers have been installed in 1999 at the Argentinian sites of Ushuaia (54S), Marambio (64S) and Belgrano-II (77S) in order to continuously monitor UV radiation, photosynthetically active radiation and total ozone. The measurements were established by INM, Spain in collaboration with FMI, Finland, DNA-IAA, Argentina and CADIC, Argentina to observe and characterize the spatial and temporal evolution of ozone and ultraviolet radiation in the Antarctic region. Special attention has been given to the quality control and quality assurance of the measurements under harsh climatological conditions. The ozone and UV time series of 2000?2006 were calibrated using a polynomial fit for lamp measurements performed every second week all year round. The gaps in these data are minimal, with almost no data missing, and the data products are available from http://www.polarvortex.org in near real time. The data products include the erythemally-weighted UV, UVB and UVA radiation, photosynthetically active radiation (PAR), total ozone (O3) and a cloud parameter (CLT). For UV data, dose rates as well as daily doses are available; from these the maximum measured UV indices (UVI), during 2000?2006, were 12.0, 9.7 and 8.1 at Ushuaia, Marambio and Belgrano-II, respectively

    Quality assurance of the solar UV network in the Antarctic

    Get PDF
    Measuring ultraviolet radiation in the Antarctic region, where weather conditions are extremely challenging, is a demanding task. Proper quality control of the measurements and quality assurance of the data, which are the basis of all scientific use of data, has to be especially well planned and executed. In this paper we show the importance of proper quality assurance and describe the methods used to successfully operate the NILU-UV multichannel radiometers of the Antarctic network stations at Ushuaia, 54S, and Marambio, 64S. According to our experience, even though multichannel instruments are supposed to be rather stable as a function of time, severe drifts can occur in the sensitivity of the channels under these harsh conditions. During 2000–2003 the biggest drifts were 35%, both at Ushuaia and Marambio, with the sensitivity of the channels dropping at different rates. Without proper corrections in the data, this would have seriously affected the calculated UV dose rates. As part of the quality assurance of the network a traveling reference NILU-UV, which was found to be stable, was used to transfer the desired irradiance scale to the site NILU-UV data. Relative lamp tests were used to monitor the stability of the instruments. Each site NILU-UV was scaled channel by channel to the traveling reference by performing solar comparisons. The method of scaling each channel separately was found to be successful, even though the differences between the raw data of the site NILU-UV and the reference instruments were, before the data correction, as much as 40%. After the correction, the mean ratios of erythemally weighted UV dose rates measured during the solar comparisons in 2000–2003 between the reference NILU-UV and the site NILU-UV were 1.007 ± 0.011 and 1.012 ± 0.012 for Ushuaia and Marambio, respectively, when the solar zenith angle varied up to 80. These results make possible the scientific use of NILU-UV data measured simultaneously at quite different locations, e.g., the Antarctic and Arctic, and the method presented is also practicable for other multichannel radiometer networks.S, and Marambio, 64S. According to our experience, even though multichannel instruments are supposed to be rather stable as a function of time, severe drifts can occur in the sensitivity of the channels under these harsh conditions. During 2000–2003 the biggest drifts were 35%, both at Ushuaia and Marambio, with the sensitivity of the channels dropping at different rates. Without proper corrections in the data, this would have seriously affected the calculated UV dose rates. As part of the quality assurance of the network a traveling reference NILU-UV, which was found to be stable, was used to transfer the desired irradiance scale to the site NILU-UV data. Relative lamp tests were used to monitor the stability of the instruments. Each site NILU-UV was scaled channel by channel to the traveling reference by performing solar comparisons. The method of scaling each channel separately was found to be successful, even though the differences between the raw data of the site NILU-UV and the reference instruments were, before the data correction, as much as 40%. After the correction, the mean ratios of erythemally weighted UV dose rates measured during the solar comparisons in 2000–2003 between the reference NILU-UV and the site NILU-UV were 1.007 ± 0.011 and 1.012 ± 0.012 for Ushuaia and Marambio, respectively, when the solar zenith angle varied up to 80. These results make possible the scientific use of NILU-UV data measured simultaneously at quite different locations, e.g., the Antarctic and Arctic, and the method presented is also practicable for other multichannel radiometer networks.S. According to our experience, even though multichannel instruments are supposed to be rather stable as a function of time, severe drifts can occur in the sensitivity of the channels under these harsh conditions. During 2000–2003 the biggest drifts were 35%, both at Ushuaia and Marambio, with the sensitivity of the channels dropping at different rates. Without proper corrections in the data, this would have seriously affected the calculated UV dose rates. As part of the quality assurance of the network a traveling reference NILU-UV, which was found to be stable, was used to transfer the desired irradiance scale to the site NILU-UV data. Relative lamp tests were used to monitor the stability of the instruments. Each site NILU-UV was scaled channel by channel to the traveling reference by performing solar comparisons. The method of scaling each channel separately was found to be successful, even though the differences between the raw data of the site NILU-UV and the reference instruments were, before the data correction, as much as 40%. After the correction, the mean ratios of erythemally weighted UV dose rates measured during the solar comparisons in 2000–2003 between the reference NILU-UV and the site NILU-UV were 1.007 ± 0.011 and 1.012 ± 0.012 for Ushuaia and Marambio, respectively, when the solar zenith angle varied up to 80. These results make possible the scientific use of NILU-UV data measured simultaneously at quite different locations, e.g., the Antarctic and Arctic, and the method presented is also practicable for other multichannel radiometer networks.. These results make possible the scientific use of NILU-UV data measured simultaneously at quite different locations, e.g., the Antarctic and Arctic, and the method presented is also practicable for other multichannel radiometer networks.Fil: Lakkala, K.. Finnish Meteorological Institute; FinlandiaFil: Redondas, A.. Instituto Nacional de Meteorología; EspañaFil: Meinander, O.. Finnish Meteorological Institute; FinlandiaFil: Torres ,Carlos. Instituto Nacional de Meteorología; EspañaFil: Koskela, T.. Finnish Meteorological Institute; FinlandiaFil: Cuevas, Eduardo. Instituto Nacional de Meteorología; EspañaFil: Taalas, P.. Finnish Meteorological Institute; FinlandiaFil: Dahlback, A.. University of Oslo; NoruegaFil: Deferrari, Guillermo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Edvardsen, K.. Instituto Noruego de Investigación del Aire; NoruegaFil: Ochoa, H.. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentin

    Quality assurance of the Brewer UV measurements in Finland

    No full text
    International audienceThe quality assurance of the two Brewer spectrophotometers of the Finnish Meteorological Institute is discussed in this paper. The complete data processing chain from raw signal to high quality spectra is presented. The quality assurance includes daily maintenance, laboratory characterizations, calculation of long term spectral responsivity, data processing and quality assessment. The cosine correction of the measurements is based on a new method, and included in the data processing software. The results showed that the actual cosine correction factor of the Finnish Brewers can vary between 1.08?1.13 and 1.08?1.12, respectively, depending on the sky radiance distribution and wavelength. The temperature characterization showed a linear temperature dependence between the internal temperature and the photon counts per cycle, and a temperature correction was used for correcting the measurements. The long term spectral responsivity was calculated using time series of several lamps using two slightly different methods. The long term spectral responsivity was scaled to the irradiance scale of the Helsinki University of Technology (HUT) for the whole measurement time periods 1990?2006 and 1995?2006 for Sodankylä and Jokioinen, respectively. Both Brewers have participated in many international spectroradiometer comparisons, and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002?2007

    Quality assurance of the Brewer spectral UV measurements in Finland

    Get PDF
    The quality assurance of the two Brewer spectrophotometers of the Finnish Meteorological Institute is discussed in this paper. The complete data processing chain from raw signal to high quality spectra is presented. The quality assurance includes daily maintenance, laboratory characterizations, calculation of long-term spectral responsivity, data processing and quality assessment. The cosine correction of the measurements is based on a new method, and is included in the data processing software. The results showed that the actual cosine correction factor of the two Finnish Brewers can vary between 1.08–1.13 and 1.08–1.12, respectively, depending on the sky radiance distribution and wavelength. The temperature characterization showed a linear temperature dependence between the instruments' internal temperature and the photon counts per cycle, and a temperature correction was used for correcting the measurements. The long-term spectral responsivity was calculated using the time series of several lamps using two slightly different methods. The long-term spectral responsivity was scaled to the irradiance scale of the Helsinki University of Technology (HUT) for the whole of the measurement time-periods 1990–2006 and 1995–2006 for Sodankylä and Jokioinen, respectively. Both Brewers have participated in many international spectroradiometer comparisons, and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002–2007

    Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simultaneous saccharification and co-fermentation (SSCF) has been recognized as a feasible option for ethanol production from xylose-rich lignocellulosic materials. To reach high ethanol concentration in the broth, a high content of water-insoluble solids (WIS) is needed, which creates mixing problems and, furthermore, may decrease xylose uptake. Feeding of substrate has already been proven to give a higher xylose conversion than a batch SSCF. In the current work, enzyme feeding, in addition to substrate feeding, was investigated as a means of enabling a higher WIS content with a high xylose conversion in SSCF of a xylose-rich material. A recombinant xylose-fermenting strain of <it>Saccharomyces cerevisiae </it>(TMB3400) was used for this purpose in fed-batch SSCF experiments of steam-pretreated wheat straw.</p> <p>Results</p> <p>By using both enzyme and substrate feeding, the xylose conversion in SSCF could be increased from 40% to 50% in comparison to substrate feeding only. In addition, by this design of the feeding strategy, it was possible to process a WIS content corresponding to 11% in SSCF and obtain an ethanol yield on fermentable sugars of 0.35 g g<sup>-1</sup>.</p> <p>Conclusion</p> <p>A combination of enzyme and substrate feeding was shown to enhance xylose uptake by yeast and increase overall ethanol yield in SSCF. This is conceptually important for the design of novel SSCF processes aiming at high-ethanol titers. Substrate feeding prevents viscosity from becoming too high and thereby allows a higher total amount of WIS to be added in the process. The enzyme feeding, furthermore, enables keeping the glucose concentration low, which kinetically favors xylose uptake and results in a higher xylose conversion.</p

    Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass

    Get PDF
    Lignocellulosic biomass is an attractive carbon source for bio-based fuel and chemical production; however, its compositional heterogeneity hinders its commercial use. Since most microbes possess carbon catabolite repression (CCR), mixed sugars derived from the lignocellulose are consumed sequentially, reducing the efficacy of the overall process. To overcome this barrier, microbes that exhibit the simultaneous consumption of mixed sugars have been isolated and/or developed and evaluated for the lignocellulosic biomass utilization. Specific strains of Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis have been engineered for simultaneous glucose and xylose utilization via mutagenesis or introduction of a xylose metabolic pathway. Other microbes, such as Lactobacillus brevis, Lactobacillus buchneri, and Candida shehatae possess a relaxed CCR mechanism, showing simultaneous consumption of glucose and xylose. By exploiting CCR-negative phenotypes, various integrated processes have been developed that incorporate both enzyme hydrolysis of lignocellulosic material and mixed sugar fermentation, thereby enabling greater productivity and fermentation efficacy
    • …
    corecore