10 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Clinical features of patients hospitalised with COVID-19 from February to October 2020, during the early waves of the pandemic in New Zealand

    No full text
    Aim: As New Zealand transitions towards endemic SARS-CoV-2, understanding patient factors predicting severity, as well as hospital resourcing requirements will be essential for future planning. Methods: We retrospectively enrolled patients hospitalised with COVID-19 from 26 February to 5 October 2020 as part of the COVID-19 HospitalisEd Patient SeverIty Observational Study NZ (COHESION). Data on demographics, clinical course and outcomes were collected and analysed as a descriptive case series. Results: Eighty-four patients were identified across eight district health boards. Forty-one (49%) were male. The median age was 58 years [IQR: 41.7–70.3 years]. By ethnicity, hospitalisations included 38 NZ European (45%), 19 Pasifika (23%), 13 Māori (15%), 12 Asian (14%) and 2 Other (2%). Pre-existing co-morbidities included hypertension (26/82, 32%), obesity (16/66, 24%) and diabetes (18/81, 22%). The median length of stay was four days [IQR: 2–15 days]. Twelve patients (12/83, 14%) were admitted to an intensive care unit or high dependency unit (ICU/HDU). Ten (10/83, 12%) patients died in hospital of whom seven (70%) were not admitted to ICU/HDU; the median age at death was 83 years. Conclusion: Despite initially low case numbers in New Zealand during 2020, hospitalisation with COVID-19 was associated with a high mortality and hospital resource requirements

    Data from: Mitogenomic phylogenetics of fin whales (Balaenoptera physalus spp.): genetic evidence for revision of subspecies

    Get PDF
    There are three described subspecies of fin whales (Balaenoptera physalus): B. p. physalus Linnaeus, 1758 in the Northern Hemisphere, B. p. quoyi Fischer, 1829 in the Southern Hemisphere, and a recently described pygmy form, B. p. patachonica Burmeister, 1865. The discrete distribution in the North Pacific and North Atlantic raises the question of whether a single Northern Hemisphere subspecies is valid. We assess phylogenetic patterns using ~16 K base pairs of the complete mitogenome for 154 fin whales from the North Pacific, North Atlantic - including the Mediterranean Sea - and Southern Hemisphere. A Bayesian tree of the resulting 136 haplotypes revealed several well-supported clades representing each ocean basin, with no haplotypes shared among ocean basins. The North Atlantic haplotypes (n = 12) form a sister clade to those from the Southern Hemisphere (n = 42). The estimated time to most recent common ancestor (TMRCA) for this Atlantic/Southern Hemisphere clade and 81 of the 97 samples from the North Pacific was approximately 2 Ma. 14 of the remaining North Pacific samples formed a well-supported clade within the Southern Hemisphere. The TMRCA for this node suggests that at least one female from the Southern Hemisphere immigrated to the North Pacific approximately 0.37 Ma. These results provide strong evidence that North Pacific and North Atlantic fin whales should not be considered the same subspecies, and suggest the need for revision of the global taxonomy of the species. There were a total of 103 CR haplotypes in the Sanger-sequenced data set (Table 1). Haplotypic diversity was high both within ocean basins as well as across all samples. The minimum diversity within an ocean basin was 0.828 for the North Atlantic, which also had the fewest samples. There were no shared haplotypes among ocean basins. There were two fixed differences between the North Atlantic and North Pacific (sites 181 and 198), and one between the North Atlantic and Southern Hemisphere sequences (site 198)

    Evaluating Impacts of Deep Oil Spills on Oceanic Marine Mammals

    No full text
    The Deepwater Horizon (DWH) oil spill may be indicative of future large, deep spills that may occur in the coming decades. Given that future deepwater spills are possible, critical considerations include (1) establishing baselines for oceanic marine mammal and populations in at-risk areas, (2) understanding the implications of response choices for oceanic marine mammals, (3) designing studies with adequate coverage for post-spill monitoring, and (4) identifying effective strategies for oceanic marine mammal restoration. In this chapter, we consider these four stages in the context of a series of hypothetical oil spill scenarios, identifying ways that lessons learned from the DWH oil spill and prior events can be applied to future disasters

    Epigenetic Regulation in Autism

    No full text
    corecore