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Abstract

There are three described subspecies of fin whales (Balaenoptera physalus): B. p. physalus Linnaeus, 1758 in the Northern
Hemisphere, B. p. quoyi Fischer, 1829 in the Southern Hemisphere, and a recently described pygmy form, B. p. patachonica
Burmeister, 1865. The discrete distribution in the North Pacific and North Atlantic raises the question of whether a single
Northern Hemisphere subspecies is valid. We assess phylogenetic patterns using ,16 K base pairs of the complete
mitogenome for 154 fin whales from the North Pacific, North Atlantic - including the Mediterranean Sea - and Southern
Hemisphere. A Bayesian tree of the resulting 136 haplotypes revealed several well-supported clades representing each
ocean basin, with no haplotypes shared among ocean basins. The North Atlantic haplotypes (n = 12) form a sister clade to
those from the Southern Hemisphere (n = 42). The estimated time to most recent common ancestor (TMRCA) for this
Atlantic/Southern Hemisphere clade and 81 of the 97 samples from the North Pacific was approximately 2 Ma. 14 of the
remaining North Pacific samples formed a well-supported clade within the Southern Hemisphere. The TMRCA for this node
suggests that at least one female from the Southern Hemisphere immigrated to the North Pacific approximately 0.37 Ma.
These results provide strong evidence that North Pacific and North Atlantic fin whales should not be considered the same
subspecies, and suggest the need for revision of the global taxonomy of the species.
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Introduction

Fin whales (Balaenoptera physalus Linnaeus, 1758) are distributed

across the temperate to subpolar waters of the world. The Society

of Marine Mammalogy currently recognizes three subspecies: B. p.

physalus Linnaeus, 1758 in the Northern Hemisphere, B. p. quoyi

Fischer, 1829 in the Southern Hemisphere, and the pygmy fin

whale, B. p. patachonica Burmeister, 1865 [1]. The distinction

between Northern and Southern Hemisphere fin whales was first

proposed in a comparative study of the osteology of Bryde’s whales

(Balaenoptera edeni Anderson, 1879) in which Lönnberg [2] noted

differences in the vertebral characteristics of fin whales in the two

hemispheres, leading to the suggestion that Southern Hemisphere

whales were a different subspecies, bearing the name B. p. quoyi.

Tomilin [3] independently noted both the larger mean and

maximum body sizes of Southern Hemisphere whales, also

suggesting that subspecific status was warranted under the same

name. These differences were later verified by morphological

examinations of a larger series of specimens in a study of body

measurements and organ weights of fin whales from the North

Atlantic and Antarctica [4], which found that Antarctic fin whales

have a greater percentage of blubber weight than those caught off

of Iceland while having similar muscle weights, making the

Icelandic whales appear leaner. The maximum body length of fin

whales in the Antarctic (.23 m) was about 3–4 m greater than

those in the Northern Hemisphere [4,5].

The establishment and recognition of the Southern Hemisphere

B. p. quoyi automatically placed all Northern Hemisphere fin

whales within the nominate subspecies B. p. physalus. Differenti-

ation between the hemispheres is a pattern mirrored in many

cetaceans [6,7] and is well supported. In contrast, the default

condition that all Northern Hemisphere fin whales belong to the

same subspecies (B. p. physalus) has not been evaluated and is

unlikely given their disjunct distribution in the North Atlantic and

North Pacific.

Recently, Clarke [8] has presented evidence that more than one

form of fin whale may exist in the Southern Hemisphere in his

description of the pygmy fin whale B. p. patachonica Burmeister,

1865 [8]. The form is described as small (approximately 18–24 m)

and dark with black baleen [9–11]. The type specimen was

collected from a stranding at the mouth of the Rio de la Plata,

Argentina [12] at approximately 36uS, and Clarke [8] suggests

that they do not extend further south than approximately 55uS.

Recent genetic and acoustic studies on this species have

focused on population-level differentiation within ocean basins in

the Northern Hemisphere, although some limited comparisons
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between North Atlantic and North Pacific populations have been

conducted. Bérubé et al [13] found no shared mitochondrial

DNA (mtDNA) haplotypes between fin whales sampled in the

Gulf of California and those sampled in the strata containing the

North Atlantic and Mediterranean; the average Fst value for six

microsatellite loci was 0.51 [14], which is several times larger

than the mean Fst of 0.12 for comparisons between North

Atlantic populations and the Mediterranean Sea. Hatch and

Clark [15] found a significant correlation between measures of

mtDNA and microsatellite differentiation and geographic dis-

tance among fin whales from various sites in the North Pacific

and North Atlantic, but no correlation using paternally inherited

DNA from the y-chromosome (yDNA), which the authors

interpreted as suggesting some degree of male-mediated dispers-

al. However, because their analyses were not hierarchically

stratified by geography, they did not address the question of

yDNA differentiation between ocean basins. In other words,

most of the correlation they present could be due to within-

ocean-basin comparisons. Additionally, while not fully diagnostic,

Hatch and Clark [15] also found that 82% of singing whales

from the North Pacific, North Atlantic, and Mediterranean Sea

could be correctly classified to the region within the ocean basin

from which they were sampled based on components of their

calls. Those that were misclassified were most often misclassified

to a region within the same ocean basin, indicating ocean-basin-

specific call components.

It is very unlikely that significant gene flow has occurred

between North Pacific and North Atlantic fin whales at least

since the closing of the Isthmus of Panama around 4 Ma

[16,17]. During the feeding season, North Pacific fin whales are

not known to extend past the Bering Sea into the Chukchi Sea

farther north than approximately 70uN [18]. In the North

Atlantic, they occur in the Norwegian Sea and have been

detected up to 80uN in the Greenland Sea and approximately

75uN in the Barents Sea [19,20]. On the western side of

Greenland, they have been detected to about 70uN in Davis

Strait [21]. During research cruises in the eastern tropical

Pacific from August to December, they are rarely encountered

south of the Baja Peninsula, Mexico [22], and are extremely

rare if not entirely absent in the western Caribbean Sea or Gulf

of Mexico [23–25].

We present the first study of the phylogenetic relationship of

fin whales from three of the primary ocean basins in which they

occur: the North Atlantic, North Pacific, and Southern Ocean.

Historically, phylogeographic analyses of large whales have

proven to be a difficult endeavor. This is a result of their overall

body sizes and widespread distribution, which makes it difficult

to accumulate, archive, and examine a sufficient number of

osteological specimens from across their range. The rapid

development of new molecular techniques, such as Next

Generation Sequencing (NGS) [26,27], as well as computer-

intensive analytical methods, such as Bayesian phylogenetics

[28] has offset some of those problems by extracting more

information from the available soft tissue samples, thus

improving our understanding of patterns of divergence at

multiple taxonomic levels [29–31]. Here we examine the

phylogenetic relationship as well as the degree and timing of

divergence of fin whales between each ocean basin using the

complete mitochondrial DNA sequence generated using NGS.

We also examine the geographical distribution of clades based

on mitogenome sequences within a larger dataset of control

region sequences generated with standard Sanger sequencing

methods.

Methods

Ethics Statement
Procedures for ensuring animal welfare during biopsy sampling

were approved as part of the Scientific Research permits issued by

the National Marine Fisheries Service under the authority of the

Marine Mammal Protection Act of 1972 (16 U.S.C. 1361 et seq),

the regulations governing the taking and importing of marine

mammals (MMPA) (50 CPR part 216), the Endangered Species

Act of 1973 (ESA) (16 U.S.C. 1531 et seq.), and the regulations

governing endangered fish and wildlife permits (50 CFR parts

222–226). Biopsies were taken under NMFS permit numbers 779–

1339, 779–1663, 14097, 774–1437, 774–1714, 1026/689424, and

873 issued to the National Marine Fisheries Service Southeast

Fisheries Science Center and Southwest Fisheries Science Center.

The samples originating from outside US jurisdiction were

imported under CITES Import permit numbers US774223 and

US689420, and under CITES Certificate of Scientific Exchange

#690343. CITES permits are issued by the U.S. Fish & Wildlife

Service. The Southwest Fisheries Science Center is a Registered

Scientific Institution under CITES (US052).

Samples
A total of 435 fin whale samples were collected from the North

Pacific, North Atlantic, Mediterranean Sea, and Southern Ocean

(Figure 1). Samples from the North Pacific, North Atlantic, and

Mediterranean Sea would currently be classified as Northern

Hemisphere fin whales (Balaenoptera physalus physalus), while those

from the Southern Ocean represent Southern Hemisphere fin

whales (B. p. quoyi). We were unable to obtain any samples that

could be positively identified as pygmy fin whales (B. p. patachonica)

for this study. Most samples are from biopsies of living whales

taken at sea, but a few North Pacific samples were from stranded

individuals. To ensure that our mitogenome dataset represented

the full range of mitochondrial diversity in each ocean basin, we

selected a subset of these samples based on mitochondrial control

region (CR) haplotypes previously generated for another project

via Sanger-sequencing as described below.

Control Region Sanger-Sequencing
For 430 samples, we sequenced the first 412 base pairs of the

hypervariable mtDNA conrol region (CR). Genomic DNA was

extracted using several standard methods including a sodium

chloride protein precipitation (modified from Miller et al [32]), a

silica-based filter purification (DNeasy kit; Qiagen, Valenica, CA,

Figure 1. Location of fin whale mitogenome samples (n=154).
Each small circle represents a single sample. Larger symbols are: red
triangle = reference sequence from Arnason et al (1998), red dia-
mond=Mediterranean Sea samples (n = 5), blue diamond= stranded
western Australia samples (n = 2).
doi:10.1371/journal.pone.0063396.g001

Mitogenomic Phylogenetics of Fin Whales

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e63396



USA), or a silica-based robotic extraction using QIAxtractor DX

reagents (Qiagen, Valenica, CA, USA). PCR reactions using

primers TRO (59-CCTCCCTAAGACTCAAGG-39; developed

at SWFSC) and D (59-CCTGAAGTAAGAACCAGATG-39 [33])

were performed in 25 ml volumes using 1 mL (approximately 5–

25 ng) genomic DNA, 16PCR buffer [10 mM Tris–HCl (pH 8.3),

50 mM KCl, 1.5 mM MgCl2], 0.3 mM of each primer, 200 mM of

each dNTP and 0.5 units of Taq DNA polymerase. The PCR

thermal profile consisted of an initial denature at 94uC for

2.5 min, followed by 35 cycles of 94uC for 45 sec, 56uC for 1 min,

and 72uC for 1.5 min, then a final extension at 72uC for 5 min.

Sanger-sequencing of the PCR product in both directions was

performed using the ABI 3100, 3130XL, and 3730 Automated

Sequencers (Applied Biosystems Inc., Foster City, CA). All

sequences were aligned using Sequencher v4.1 software (Gene

Codes Corp., 2000; Ann Arbor, MI). To test for errors in

sequencing, a random 10% replication of all samples was

completed. If a discrepancy was found, the sample was re-

sequenced from extracted DNA. Unresolved discrepancies and all

rare haplotypes were re-extracted from tissue and re-sequenced for

haplotype confirmation.

Mitogenome Next Generation Sequencing
We selected 148 of these Sanger-sequenced samples and an

additional five samples from the Mediterranean Sea for Next

Generation Sequencing (NGS) of the entire mitogenome. These

153 samples were selected to ensure that all CR haplotypes from

each ocean basin were represented in the mitogenome dataset and

all geographic regions within an ocean basin were represented.

Mitogenome library preparation closely followed a modified

capture array method [34] with a few modifications [35]. The

capture arrays had five copies of each mtDNA probe sequence,

and each array had three base pairs between the beginning of each

60 bp probe tiled across the mitochondrial sequences. The

published fin whale mitogenome (Genbank Accession NC-

001321 [36]) was used for design of capture probes using the

web-based software eArray (Agilent Technologies, Inc., Santa

Clara, CA, USA). The library preparation protocol included DNA

fragmentation, blunt-end repair of the sheared DNA, ligation of

adaptors, and individual labeling of the libraries via PCR

amplification with indexed primers. The indexed libraries were

then quantified and pooled in equimolar amounts and hybridized

to the capture arrays to enrich the pooled library for the

mitochondrial genome.

Mitogenome Assembly
Consensus sequences were generated from mitogenome se-

quence reads using a custom pipeline written by FIA (available at

the Dryad data repository, http://dx.doi.org/doi:10.5016/dryad.

cv35b) in R version 2.15.0 [37]. Reads were first assembled to the

reference fin whale sequence with the program BWA [38]. The

mpileup module in SAMTOOLS [39] was used to convert the

resulting BAM-format alignment file into a ‘‘pileup’’ text format

that lists the base composition across reads at each site in the

reference sequence. This text file was then parsed by custom R

code to create the consensus sequence for each individual, using

the following rules. If a given site had fewer than three reads, an

‘‘N’’ was placed in the consensus. If the coverage was between

three and five, and all reads contained the same nucleotide, then

that nucleotide was used in the consensus; otherwise, the consensus

received an ‘‘N’’ for that site. If coverage was greater than five,

then the nucleotide that occurred in 70% or more of the reads was

used in the consensus. If no nucleotide frequency exceeded 70%,

then an ‘‘N’’ was inserted. All mitogenome sequences (fin whale

plus outgroup species) were initially aligned with MAFFT [40]

followed by a refinement of alignments by eye.

We compared the first 412 base pairs of the control region in

the NGS sequences with those from the Sanger-sequenced dataset

for all but the five Mediterranean samples and the reference

sequence. If the NGS sequence had an ‘‘N’’ at a site or was

different from the base call in the Sanger-sequence, and the site

had a strong, high-quality peak in the Sanger-sequence chro-

matogram, then it was replaced by the Sanger-sequence base pair.

These Sanger-supplemented NGS sequences were then used in the

phylogenetic analyses.

Phylogenetic Analysis
We compiled sequences from five humpback whales (Megaptera

novaengliae) as the outgroup to fin whales given their sister species

relationships in several studies [41–43]. The full mitogenome

sequence was available for one humpback sample (Genbank

Accession # NC006927 [43]). The remaining four were partial

sequences composed of only the coding genes (Genbank Accession

#s FJ90425, Carraher et al unpublished data; GQ353254–

GQ343292 representing individual coding regions from samples

GOM9049, GOM9084, and SEA87041 [41]). With these

sequences, we compiled two datasets, one composed of the

complete 16,423 base pairs of the mitogenome with just the single

humpback outgroup, and the other composed of 11,406 base pairs

of the protein coding genes, using all five humpback samples

(referred to below as ‘‘mito’’ and ‘‘cds’’ datasets respectively).

We estimated phylogenetic relationships and divergence times

for both datasets using BEAST v1.7 [28]. In both the mito and cds

datasets, all fin whale sequences were constrained to be

monophyletic. The five humpback whale sequences were also

constrained to be monophyletic in the cds dataset. Based on the

results of an analysis with jModelTest [44], we selected the

HKY+G substitution model with 4 substitution categories for both

datasets. Models were run using a strict molecular clock for which

we set a prior distribution on the mean substitution rate to Uniform

(1e-5, 1e-2) based on the results of preliminary runs and published

estimates of substitution rates in Cetacea [30,41,43,45,46]. A Yule

speciation tree model was used and initialized with an UPGMA

tree. The prior on the tree root was set as Normal (15.8, 2.8),

corresponding to the estimate of time since most recent common

ancestor (TMRCA) between fin and humpback whales [43]. A

total of 10,000,000 MCMC iterations were run, with every 1,000th

iteration saved to create the posterior sample. Convergence and

sufficient mixing of the posterior samples were evaluated by

examination of the effective sample sizes (ESSs) and sampling

traces for each parameter using Tracer v1.5 [47].

Supplemental material, including sample numbers, collection

details, and GenBank accession numbers for each haplotype,

parameters for mitogenome assembly, BEAST input files, full

Bayesian posterior sample, and annotated trees are available at the

Dryad data repository (http://dx.doi.org/10.5061/dryad.084g8).

Results

There were a total of 103 CR haplotypes in the Sanger-

sequenced data set (Table 1). Haplotypic diversity was high both

within ocean basins as well as across all samples. The minimum

diversity within an ocean basin was 0.828 for the North Atlantic,

which also had the fewest samples. There were no shared

haplotypes among ocean basins. There were two fixed differences

between the North Atlantic and North Pacific (sites 181 and 198),

and one between the North Atlantic and Southern Hemisphere

sequences (site 198).

Mitogenomic Phylogenetics of Fin Whales
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Alignment of the mitogenome reads to the reference produced

high quality consensus sequences 16,401 bp in length for most

samples. The median number of reads aligning to the reference for

each sample was 23,608. The median coverage (the number of

reads aligning to a given site on the reference) per sample was 136.

Of the 153 mitogenomes, 142 had at least one read covering every

site. Of the remaining 11 sequences, the maximum number of sites

with no coverage was 36. After alignment and base calling,

approximately 33% of the consensus sequences had no missing

bases. The median number of missing bases in a sequence was

one, with 94% of the sequences having fewer than ten missing

bases. There was no significant clustering of missing data within

any particular region of the mitogenome, either across all samples

or within samples from a given ocean basin. As expected, diversity

in the mitogenome dataset was higher than in the Sanger control

region sequences (Table 1). None of the 136 mitogenome

haplotypes were shared among ocean basins.

Bayesian estimates of the TMRCA and nucleotide substitution

rates from both the full mitogenome (mito) and coding region (cds)

datasets were very similar (Figure 2 and 3). Both analyses

produced results with high ESSs and stable, well-mixed posterior

samples after approximately 100,000 iterations. Thus, unless

otherwise specified, we will only refer to results from the mito

analysis. Mean substitution rate estimates (2.94e-3, 95%

HPD = 1.79e-3–4.45e-3) agree well with estimates from Jackson

et al [41] for mysticetes across the mitogenome (3.1e-3, 95%

HPD = 2.6e-3–3.7e-3), and Sasaki et al [43] as reported in

Nabholz et al [46] between humpback and fin whales (8e-3,

95% CI = 5e-3–2e-2), and between Bryde’s and sei whales (7e-3,

95% CI = 3e-3–1.2e-2) [41,43,46]. However our estimates are

slightly less than those made by Dornburg et al [45] for within fin

whales (1.1e-2, 95% HPD = 9e-3–1.2e-2), and within humpbacks

(7.7e-3, 95% HPD = 5.6e-3–9.5e-3) [45].

The Bayesian phylogenetic tree shows a strong association of

clades to the three ocean basins (Figure 2 and 3). Most of the

North Pacific samples (n = 81) fall within one clade (NP clade A),

which diverged from the other fin whales approximately 2 Ma

(95% HPD = 1.1–2.8 Ma). All North Atlantic and Mediterranean

samples diverged from the remaining Southern Hemisphere and

North Pacific samples approximately 1 Ma (95% HPD = 0.6–

1.5 Ma). Within this North Atlantic clade, the Mediterranean

samples do not share haplotypes with samples from the rest of the

North Atlantic, nor do they form a separate clade on their own.

A striking feature in the remainder of the tree is the presence of

two clades of North Pacific samples among the Southern

Hemisphere samples. The outermost clade (North Pacific clade

B) contains only two samples, one from Hawaii and the other from

the Gulf of California. The posterior probability (PP) for the node

joining this clade to the rest of the samples is relatively low (0.68) in

both the mito and cds trees (0.68 and 0.73 respectively) indicating

uncertain placement. This is also evidenced by its position internal

to Southern Hemisphere clade A in the mito tree and external to it

in the cds tree. However, the second, more recently diverged clade

of 14 North Pacific samples (North Pacific clade C) is well

supported (PP = 1) as closely related to Southern Hemisphere

samples. This clade is estimated to have diverged approximately

0.37 Ma (95% HPD = 0.19–0.54 Ma). The TMRCA of all

samples within this clade is more recent (approximately

0.06 Ma, 95% HPD = 0.06–0.21 Ma).

In order to examine the representation and distribution of

North Pacific clades A and C in a larger sample of animals from

the North Pacific (ignoring clade B due to its uncertain placement

and small sample size), we conducted a simple assignment test of

the North Pacific samples for which we had Sanger D-loop

sequences that were not included in the NGS mitogenome data.

We calculated the mean Jukes-Cantor distance between these

samples and all samples in each of the two clades. Samples were

then assigned to the clade to which they had the shortest mean

pairwise distance.

The results of this analysis indicate that although both clades are

represented in the larger sample from the North Pacific, there is a

slight, but significant difference in the frequencies of geographic

Table 1. Number of samples, haplotypes, and sequence diversity for each sequence dataset.

Samples Haplotypes Variable Sites Haplotypic Diversity

Sanger CR

North Pacific 346 50 36 0.935

North Atlantic 28 12 16 0.828

Southern Hemisphere 48 41 36 0.993

Total 422 103 55 0.955

Mitogenome CR

North Pacific 97 49 36 0.980

North Atlantic 8 8 14 1

Southern Hemisphere 43 41 36 0.997

Total 148 98 54 0.991

Mitogenome

North Pacific 97 82 501 0.996

North Atlantic 14 12 97 0.967

Southern Hemisphere 43 42 438 0.999

Total 154 136 925 0.998

‘‘Sanger CR’’ is the 412 bp of the control region generated from Sanger sequences. ‘‘Mitogenome CR’’ is the corresponding 412 bp of the control region from the NGS
mitogenome sequence, and ‘‘Mitogenome’’ is the 16.4 Kbp full mitochondrial sequence generated from NGS reads. Note that the North Atlantic Mitogenome CR set
does not include the 5 Mediterranean samples and the reference sequence from Arnason et al. (1991) for which no comparable Sanger sequences were generated.
doi:10.1371/journal.pone.0063396.t001
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strata from which they were sampled. Figure 4 shows the

distribution of the difference in mean pairwise distances to North

Pacific clade A and C for the 249 North Pacific Sanger-sequenced

control region samples. Of these, 237 were closer to the North

Pacific clade A, while the remaining 12 were closer to clade C. We

then combined these assignments with the 97 NGS samples and

examined the frequency distribution of sampling strata by clade

(Table 2). Although the overall sample size of clade C is

considerably smaller, there is indication that the sampling strata

are differentially represented in the clades (x2 p-value = 0.014).

Most notably, a higher proportion of North Pacific clade A is

composed of samples from south of Pt. Conception, California

(Gulf of California and Southern California Bight), while a higher

proportion of clade C is composed of samples from north of Pt.

Conception (California, Oregon, Washington and Gulf of Alaska).

Nevertheless, the presence of clade C in all regions examined does

not suggest that this clade could represent a relatively isolated

group of whales that would warrant separate management as a

stock or perhaps subspecies. Samples from both clades A and C

were collected together in four out of 15 sampling events where

more than one sample was taken. We did not find any differences

between the clades in the sex ratio of samples, sampling season, or

year.

In the full mitogenome there were 27 fixed differences between

all North Pacific and North Atlantic haplotypes, and 28 fixed

differences between the North Atlantic and Southern Hemisphere

(Table 3). Because of the polyphyletic relationship of the North

Pacific and Southern Hemisphere, there were no fixed differences

between haplotypes from those two ocean basins. However, when

North Pacific clades A and C were examined separately, there

Figure 2. Summary of Bayesian fin whale phylogenetic tree using full mitogenome sequences (mito dataset). The root leads to
divergence of fin whales from humpbacks. Branches with two or more samples in the same ocean basin have been collapsed. Numbers in
parentheses are number of samples at each branch tip, except for the single Southern Hemisphere samples in clade 8 (SWFSC Lab ID 91296). Scale at
bottom is node age in millions of years. Time to Most Recent Common Ancestor (TMRCA) estimates, 95% Highest Posterior Density (HPD), and
posterior probabilities (PP) of each numbered node are given in the inset table. TMRCA values not reported for nodes with PP,0.9. The full annotated
tree is available at the Dryad data repository, http://dx.doi.org/10.5061/dryad.084g8.
doi:10.1371/journal.pone.0063396.g002
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were 64 and 13 fixed differences between each clade and the

Southern Hemisphere, respectively. Interestingly, the two North

Pacific clades were more different from one another than either

was from the other two ocean basins, with 108 fixed differences

between them. The second greatest difference was the 94 fixed

differences between North Pacific clade A and the North Atlantic.

The number of fixed differences within the more commonly

sequenced cytochrome B gene and control region was propor-

tionally similar to the full mitogenome relative to sequence length.

The only comparison without at least one diagnostic site aside

from the entire North Pacific and Southern Hemisphere was in the

control region between North Pacific clade C and the Southern

Hemisphere.

Discussion

The three currently described subspecies of fin whales

(Balaenoptera physalus physalus, B. p. quoyi, B. p. patachonica) have

been based on morphological differences found in a limited series

of specimens from whaling in the North Atlantic and Southern

Ocean [2,3,8]. Since then, although there have been genetic and

acoustic studies examining population structure within ocean

basins, as well as among populations between ocean basins

[13,14,48], little work has been done to re-examine the taxonomy

of this globally-distributed species.

The results of this study, the first to explicitly examine the

divergence between North Pacific and North Atlantic fin whales in

comparison to the Southern Hemisphere, show strong phylogeo-

graphic structuring among these three ocean basins. The North

Atlantic (including samples from the Mediterranean Sea) formed

the only monophyletic clade, diverging from other fin whales in

either the North Pacific or Southern Hemisphere approximately

0.99 Ma (95% HPD = 0.56–1.46 Ma). The polyphyletic North

Pacific was distributed in three clades in the tree, the largest of

which diverged from all other fin whale haplotypes approximately

1.94 Ma (95% HPD = 1.09–2.81 Ma), and the other two associ-

ated with Southern Hemisphere whales. These estimates are

congruent with those made by Bérubé et al [14] with North Pacific

and North Atlantic/Mediterranean fin whales having diverged 1–

3 Ma. These patterns in conjunction with the large number of

fixed differences between North Atlantic fin whales and all other

ocean basins strongly indicate that Balaenoptera physalus physalus, the

Figure 3. Summary of Bayesian fin whale phylogenetic tree using protein coding mitogenome sequences (cds dataset). The root leads
to divergence of fin whales from humpbacks. Branches with two or more samples in the same ocean basin have been collapsed. Numbers in
parentheses are number of samples at each branch tip. Time to Most Recent Common Ancestor (TMRCA) estimates, 95% Highest Posterior Density
(HPD), and posterior probabilities (PP) of each numbered node are given in the inset table. TMRCA values not reported for nodes with PP,0.9. The
full annotated tree is available at the Dryad data repository http://dx.doi.org/10.5061/dryad.084g8.
doi:10.1371/journal.pone.0063396.g003
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Northern Hemisphere fin whale, is not composed of a single

subspecies.

Among globally distributed mysticetes, like fin whales, the

amount of divergence between closely related taxa in each

hemisphere and ocean basin varies. It is believed that the generic

migratory pattern of large whales (feeding in higher latitudes

during the summer months, and travelling to lower latitudes to

calve and breed in the winter) serves as a relatively effective barrier

to trans-equatorial gene flow [6,7], leading towards reproductive

isolation and ultimately speciation in each hemisphere. However,

some species, like blue whales (Balaenoptera musculus Linneaus, 1758)

can be found near the equator either seasonally or year-round

[49], and trans-equatorial migrations and movements between

ocean basins have been observed in other species as well [50,51].

Changes in oceanographic conditions, such as cooling during

Pleistocene glacial periods, could force anti-tropical forms closer

together, increasing the likelihood of exchange [6]. These

processes would be expected to produce a pattern in which anti-

tropical pairs with a greater distributional hiatus near the equator

are also more taxonomically divergent.

Right whales (Eubalaena spp. Gray, 1864), which are distributed

in temperate to subpolar waters and are rarely encountered below

approximately 15u–20u latitude in either hemisphere [52–54],

represent one end of this spectrum. For this genus, there is a broad

30u–40u band that separates whales in the two hemispheres.

Historically, two antitropical species of right whales were

recognized: Eubalaena glacialis Müller, 1776 in the Northern

Hemisphere, and E. australis Desmoulins, 1822 in the Southern

Hemisphere [55]. Rosenbaum et al [7] demonstrated that within

the mitochondrial control region, E. glacialis contained two

reciprocally monophyletic matrilines [7]. The matriline containing

haplotypes from the North Pacific was more closely related to the

Southern Hemisphere E. australis than to E. glacialis in the North

Atlantic, which were basal in the tree. The authors therefore

suggested that North Pacific right whales should be elevated to full

species status as E. japonica Lacépède, 1818, a designation later

confirmed with a suite of nuclear loci [56]. Within the 292 bp

examined by Rosenbaum et al [7], there were between 6 and 7

fixed differences between Eubalaena species. In comparison, in the

same region in our fin whale sequences, there are only two fixed

differences between North Atlantic and North Pacific samples, one

fixed difference between North Atlantic and Southern Hemisphere

samples and no fixed differences between North Pacific and

Southern Ocean samples.

With a distribution more like that of fin whales, minke whales

are represented both by antitropical species and subspecies pairs.

The common minke whale (Balaenoptera acutorostrata Lacépède,

1804) can be found from subpolar waters during the summer

feeding season, to more temperate to tropical waters in the winter

breeding period [55,57–59]. Within this species, there are three

recognized subspecies: B. a. acutorostrata in the north Atlantic, B. a.

scammoni Deméré, 1986, in the North Pacific, and the dwarf minke

(B. a. subsp.) in the Southern Hemisphere [55]. The sister species

to the common minke whale, the Antarctic minke whale (B.

bonaerensis Burmeister, 1867) is restricted to the Southern

Hemisphere. The TMRCA between the two minke whale species

has been estimated to be between 4.4 and 4.9 Ma, and the

TMRCA of the three common minke whale (B. acutorostrata)

subspecies was estimated at 1.2 Ma (95% CI = 0.3–2.2 Ma) [60],

very similar to the TMRCA of all fin whale haplotypes in this

study (1.9 Ma, 95% HPD = 1.1–2.9 Ma).

The taxonomy of blue whales (Balaenoptera musculus), which has

yet to be fully elucidated, may represent the other end of this

spectrum. In the Pacific, blue whales are found around the

productive tropical Costa Rica Dome year round [49], and

feeding has been documented off the equatorial Galapagos Islands

[61]. It is likely that at least seasonally, waters from south of the

Equator to northern Peru can contain blue whales from both the

Northern and Southern Hemispheres [49,62]. The nominate

subspecies (B. m. musculus) contains whales in the North Atlantic

and North Pacific combined. Two additional subspecies are

recognized, the subantarctic ‘‘pygmy’’ blue whales (B. m. brevicauda

Ichihara, 1966), and the Antarctic ‘‘true’’ blue whales (B. m.

intermedia Burmeister, 1871–72) [55]. Although they are morpho-

logically diagnosable, the amount of genetic differentiation among

subspecies described to date is low compared to that found for

other recognized subspecies of whales, as well as that found

between ocean basins in the fin whale data in this study [62,63].

Thus, with their temperate distributions, fin whales exhibit

patterns of divergence intermediate to those of minke and blue

Figure 4. Distribution of difference between mean distances to
North Pacific clade A and North Pacific clade C for all mtDNA
control region sequences. Values below 0 indicate that the sample is
closer to clade A than clade C.
doi:10.1371/journal.pone.0063396.g004

Table 2. Distribution of North Pacific sampling strata in
phylogenetic clades from assignment of control region
sequences.

Strata NP Clade A NP Clade C

Bering Sea 21 (0.06) 2 (0.07)

Gulf of Alaska 111 (0.35) 12 (0.43)

California, Oregon, Washington 38 (0.12) 9 (0.32)

Southern California Bight 114 (0.36) 3 (0.11)

Gulf of California 32 (0.10) 1 (0.04)

Hawaii 2 (0.01) 1 (0.04)

Values are number of samples with the proportion of samples in each stratum
in parentheses. Samples include both those assigned from control region
sequences and mitogenome sequences used to build the Bayesian tree.
doi:10.1371/journal.pone.0063396.t002

Mitogenomic Phylogenetics of Fin Whales

PLOS ONE | www.plosone.org 7 May 2013 | Volume 8 | Issue 5 | e63396



whales. The polyphyletic pattern of North Pacific and Southern

Hemisphere haplotypes could represent evidence of introgression

between the two oceans. At the very least, it appears that North

Pacific clade C (Figure 2) results from a migration event occurring

relatively recently, approximately 0.37 Ma. Alternatively, the

patterns we see could result from incomplete lineage sorting,

reflecting ancestral polymorphism of a much larger population.

This would suggest that gene flow between the two ocean basins

had ceased earlier, perhaps closer to the 1.94 Ma divergence time

of North Pacific clade A. Differentiating between introgression and

incomplete lineage sorting is rarely straightforward without other

sources of information such as patterns of divergence from nuclear

genes [64,65]. However, given that the divergence of North Pacific

clade A is approximately 1.52 Ma older than North Pacific clade

C, we believe it is most likely that clade C represents a migration

event. The estimated position of North Pacific clade B in the tree,

basal to the Southern Hemisphere haplotypes, would be more

consistent with incomplete lineage sorting, but the relatively weak

PP of this clade (0.64) make any inferences about its origin tenuous

at best.

While it is clear that the mitogenome can provide enhanced

resolution for phylogenetic patterns [29–31], it is nonetheless still

inherited as a single locus with multiple linked genes and as such

may produce gene trees that are not the same as the ‘‘species’’

trees due to introgression or hybridization [64]. With the rapid

growth of Next Generation Sequencing, we are likely to see an

order-of-magnitude increase in the number of nuclear loci that can

be to be applied to phylogenetic questions [66].

Bérubé et al [13,14] have shown significant population differ-

entiation between Mediterranean and North Atlantic populations

as well as evidence of structure between fin whales from the

western and eastern North Atlantic [13,14]. Acoustic differences

between North Atlantic and Mediterranean fin whales have also

been described [67]. Although population structure in the North

Pacific has not been fully elucidated, Mizroch et al [68] discussed

five possible populations, or ‘‘feeding aggregations’’: the eastern

and western groups that move along the Aleutians [69,70]; the

East China Sea group; a group that moves north and south along

the west coast of North America between California and the Gulf

of Alaska [71]; and the whales in the Sea of Cortez, which have

been recognized as a resident population based on both genetic

and acoustic differences [13,15,72]. Multiple fin whale call types

have been described for the eastern North Pacific (personal

communication, E. Oleson, Pacific Island Fisheries Science

Center, National Marine Fisheries Service) [15], suggesting that

there may be further subdivision along the west coast of North

America. In light of this, it is intriguing that although we did not

see strong phylogeographic structure within ocean basins in our

data, we did see differential representation of the North Pacific

clades A and C on either side of Pt. Conception, CA. Whether or

not population subdivision or diversity in the North Pacific is

related to patterns of historical immigration will be better

addressed by future analyses of nuclear and acoustic data.

The taxonomic status of North Pacific fin whales is unclear. If

analyses of nuclear loci indicate current gene flow between the

clade A and clade C mitochondrial matrilines, this would suggest

that all eastern North Pacific fin whales are members of a single,

new subspecies. On the other hand, if significant differentiation

between these two clades is observed in nuclear markers, then

further work should be conducted to further describe other

differences between these two sympatric forms. Given its

placement in the tree, clade C would likely fall within the current

definition for B. p. quoyi, with the odd result of ‘‘Southern

Hemisphere’’ fin whales residing in the North Pacific. The

sympatric clade A would then become a new subspecies.

Future genetic studies would be greatly enhanced by the

inclusion of more samples from regions in which fin whales are

known to occur. All but two of the Southern Hemisphere samples

came from a single region sampled over a two-year period [73,74]

and did not encompass the full range of fin whales across the

Southern Ocean [75]. The inclusion of samples from the South

Atlantic and South Pacific would allow us to clarify the

evolutionary relationship of the North Atlantic and North Pacific

and help identify potential avenues of dispersal. Additionally, these

samples would allow for the examination of further structuring

within B. p. quoyi in the Southern Hemisphere. In particular, they

would be valuable for examining the validity of the low- to mid-

latitude pygmy fin whales, B. p. patachonica. The description

presented by Clarke [8] is primarily based on an examination of

whaling records, historical descriptions of external morphology,

and the biological examination of one specimen. Thus, genetic

samples of whales from this region will be necessary to fully

Table 3. Number of fixed differences between ocean basins and phylogenetic clades in the full mitogenome, cytochrome B, and
the control region.

North Pacific North Pacific Clade A North Pacific Clade C North Atlantic

Full mitogenome (16,423 bp)

North Pacific Clade C – 108

North Atlantic 27 94 77

Southern Hemisphere 0 64 13 28

Cytochrome B (1,139 bp)

North Pacific Clade C – 11

North Atlantic 3 11 6

Southern Hemisphere 0 7 1 2

Control region (412 bp)

North Pacific Clade C – 1

North Atlantic 2 3 4

Southern Hemisphere 0 1 0 1

The first ‘‘North Pacific’’ column represents all North Pacific samples (clades A, B, and C).
doi:10.1371/journal.pone.0063396.t003
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evaluate this proposed subspecies and its relationship to other

Southern Hemisphere whales.

In all ocean basins, fin whale populations were greatly reduced

by commercial whaling in the early 20th century [68,76]. As a

result, fin whales in both the Atlantic and Pacific are listed as

‘‘Endangered’’ under the United States Endangered Species Act

and by the International Union for the Conservation of Nature

and Natural Resources (IUCN). In the North Pacific, North

Atlantic, and Mediterranean Sea, fin whales appear to be

particularly vulnerable to ship strikes [76–79]. In the eastern

North Pacific, populations are increasing [80]. Their status is

uncertain in the North Atlantic and Southern Ocean, regions

where limited whaling is still occurring [76]. To effectively manage

such a globally distributed species, with variable threats, histories

of exploitation, and therefore different levels of recovery in each

region, it is important to ensure that the taxonomy appropriately

reflects the degree of genetic differentiation and divergence.
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