88 research outputs found

    From fat droplets to floating forests: cross-domain transfer learning using a PatchGAN-based segmentation model

    Full text link
    Many scientific domains gather sufficient labels to train machine algorithms through human-in-the-loop techniques provided by the Zooniverse.org citizen science platform. As the range of projects, task types and data rates increase, acceleration of model training is of paramount concern to focus volunteer effort where most needed. The application of Transfer Learning (TL) between Zooniverse projects holds promise as a solution. However, understanding the effectiveness of TL approaches that pretrain on large-scale generic image sets vs. images with similar characteristics possibly from similar tasks is an open challenge. We apply a generative segmentation model on two Zooniverse project-based data sets: (1) to identify fat droplets in liver cells (FatChecker; FC) and (2) the identification of kelp beds in satellite images (Floating Forests; FF) through transfer learning from the first project. We compare and contrast its performance with a TL model based on the COCO image set, and subsequently with baseline counterparts. We find that both the FC and COCO TL models perform better than the baseline cases when using >75% of the original training sample size. The COCO-based TL model generally performs better than the FC-based one, likely due to its generalized features. Our investigations provide important insights into usage of TL approaches on multi-domain data hosted across different Zooniverse projects, enabling future projects to accelerate task completion.Comment: 5 pages, 4 figures, accepted for publication at the Proceedings of the ACM/CIKM 2022 (Human-in-the-loop Data Curation Workshop

    Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family.

    Get PDF
    By consensus, the acyl-CoA synthetase (ACS) community, with the advice of the human and mouse genome nomenclature committees, has revised the nomenclature for the mammalian long-chain acyl-CoA synthetases. ACS is the family root name, and the human and mouse genes for the long-chain ACSs are termed ACSL1,3-6 and Acsl1,3-6, respectively. Splice variants of ACSL3, -4, -5, and -6 are cataloged. Suggestions for naming other family members and for the nonmammalian acyl-CoA synthetases are made

    The role of the ubiquitination-proteasome pathway in breast cancer: Applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer

    Get PDF
    The ubiquitin-proteasome pathway is responsible for most eukaryotic intracellular protein degradation. This pathway has been validated as a target for antineoplastic therapy using both in vitro and preclinical models of human malignancies, and is influenced as part of the mechanism of action of certain chemotherapeutic agents. Drugs whose primary action involves modulation of ubiquitin-proteasome activity, most notably the proteasome inhibitor PS-341, are currently being evaluated in clinical trials, and have already been found to have significant antitumor efficacy. On the basis of the known mechanisms by which these agents work, and the available clinical data, they would seem to be well suited for the treatment of breast neoplasms. Such drugs, alone and especially in combination with current chemotherapeutics, may well represent important advances in the therapy of patients with breast cancer

    Analysis of Common and Specific Mechanisms of Liver Function Affected by Nitrotoluene Compounds

    Get PDF
    BACKGROUND: Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2ADNT) 4-amino-2,6-dinitrotoulene (4ADNT), 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT)] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. CONCLUSIONS/SIGNIFICANCE: A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and physiological endpoints affected by these compounds

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore