112 research outputs found

    Long-Range Correlations and the Momentum Distribution in Nuclei

    Get PDF
    The influence of correlations on the momentum distribution of nucleons in nuclei is evaluated starting from a realistic nucleon-nucleon interaction. The calculations are performed directly for the finite nucleus \,^{16}O making use of the Green's function approach. The emphasis is focused on the correlations induced by the excitation modes at low energies described within a model-space of shell-model configurations including states up to the sdg shell. Our analysis demonstrates that these long-range correlations do not produce any significant enhancement of the momentum distribution at high missing momenta and low missing energies. This is in agreement with high resolution (e,ep)(e,e'p) experiments for this nucleus. We also try to simulate the corresponding effects in large nuclei by quenching the energy-spacing between single-particle orbits. This yields a sizable enhancement of the spectral function at large momenta and small energy. Such behavior could explain the deviation of the momentum distribution from the mean field prediction, which has been observed in (e,ep)(e,e'p) experiments on heavy nuclei like 208^{208}Pb

    Correlations and the Cross Section of Exclusive (e,epe,e'p) Reactions for 16^{16}O

    Get PDF
    The reduced cross section for exclusive (e,epe,e'p) reactions has been studied in DWIA for the example of the nucleus 16^{16}O using a spectral function containing effects of correlations. The spectral function is evaluated directly for the finite nucleus starting from a realistic nucleon-nucleon interaction within the framework of the Green's function approach. The emphasis is focused on the correlations induced by excitation modes at low energies described within a model-space of shell-model configurations including states up to the sdgsdg shell. Cross sections for the pp-wave quasi-hole transitions at low missing energies are presented and compared with the most recent experimental data. In the case of the so-called perpendicular kinematics the reduced cross section derived in DWIA shows an enhancement at high missing momenta as compared to the PWIA result. Furthermore the cross sections for the ss- and dd-wave quasi-hole transitions are presented and compared to available data at low missing momenta. Also in these cases, which cannot be described in a model without correlations, a good agreement with the experiment is obtained.Comment: 12 pages, LaTeX, 4 figures include

    Nucleon-nucleus optical potential in the particle-hole approach

    Get PDF
    Feshbach's projection formalism in the particle-hole model space leads to a microscopic description of scattering in terms of the many-body self-energy. To investigate the feasibility of this approach, an optical potential for O-16 is constructed starting from two previous calculations of the self-energy for this nucleus. The results reproduce the background phase shifts for positive parity waves and the resonances beyond the mean field. The latter can be computed microscopically for energies of astrophysical interest using Green's function theory.Comment: 8 pages, 6 figures. Submitted to Phys. Rev.

    Auxiliary potential in no-core shell-model calculations

    Full text link
    The Lee-Suzuki iteration method is used to include the folded diagrams in the calculation of the two-body effective interaction veff(2)v^{(2)}_{\rm eff} between two nucleons in a no-core model space. This effective interaction still depends upon the choice of single-particle basis utilized in the shell-model calculation. Using a harmonic-oscillator single-particle basis and the Reid-soft-core {\it NN} potential, we find that veff(2)v^{(2)}_{\rm eff} overbinds ^4\mbox{He} in 0, 2, and 4Ω4\hbar\Omega model spaces. As the size of the model space increases, the amount of overbinding decreases significantly. This problem of overbinding in small model spaces is due to neglecting effective three- and four-body forces. Contributions of effective many-body forces are suppressed by using the Brueckner-Hartree-Fock single-particle Hamiltonian.Comment: 14 text pages and 4 figures (in postscript, available upon request). AZ-PH-TH/94-2

    Nucleon-Nucleon Correlations and Two-Nucleon Currents in Exclusive (e,eNNe,e'NN) Reactions

    Get PDF
    The contributions of short-range nucleon-nucleon (NN) correlations, various meson exchange current (MEC) terms and the influence of Δ\Delta isobar excitations (isobaric currents, IC) on exclusive two-nucleon knockout reactions induced by electron scattering are investigated. The nuclear structure functions are evaluated for nuclear matter. Realistic NN interactions derived in the framework of One-Boson-Exchange model are employed to evaluate the effects of correlations and MEC in a consistent way. The correlations correlations are determined by solving the Bethe-Goldstone equation. This yields significant contributions to the structure functions W_L and W_T of the (e,e'pn) and (e,e'pp) reactions. These contributions compete with MEC corrections originating from the π\pi and ρ\rho exchange terms of the same interaction. Special attention is paid to the so-called 'super parallel' kinematics at momentum transfers which can be measured e.g. at MAMI in Mainz.Comment: 14 pages, 8 figures include

    Final State Interaction in Exclusive (e,eNN)(e,e'NN) Reactions

    Get PDF
    Contributions of nucleon-nucleon (NN) correlations, meson exchange currents and the residual final state interactions (FSI) on exclusive two-nucleon knock-out reactions induced by electron scattering are investigated. All contributions are derived from the same realistic meson exchange model for the NN interaction. Effects of correlations and FSI are determined in a consistent way by solving the NN scattering equation, the Bethe-Goldstone equation, for two nucleons in nuclear matter. One finds that the FSI re-scattering terms are non-negligible even if the two nucleons are emitted back to back.Comment: 8 pages, 5 figure

    Breaking rotational symmetry in two-flavor color superconductors

    Full text link
    The color superconductivity under flavor asymmetric conditions relevant to the compact star phenomenology is studied within the Nambu-Jona-Lasinio model. We focus on the effect of the deformation of the Fermi surfaces on the pairing properties and the energy budget of the superconducting state. We find that at finite flavor asymmetries the color superconducting BCS state is unstable towards spontaneous quadrupole deformation of the Fermi surfaces of the dd and uu quarks into ellipsoidal form. The ground state of the phase with deformed Fermi surfaces corresponds to a superposition of prolate and oblate deformed Fermi ellipsoids of dd and uu quarks.Comment: 6 pages, 4 figures. Parameter changes, references added, conclusions unchange

    A Self-Consistent Solution to the Nuclear Many-Body Problem at Finite Temperature

    Full text link
    The properties of symmetric nuclear matter are investigated within the Green's functions approach. We have implemented an iterative procedure allowing for a self-consistent evaluation of the single-particle and two-particle propagators. The in-medium scattering equation is solved for a realistic (non-separable) nucleon-nucleon interaction including both particle-particle and hole-hole propagation. The corresponding two-particle propagator is constructed explicitely from the single-particle spectral functions. Results are obtained for finite temperatures and an extrapolation to T=0 is presented.Comment: 11 pages 5 figure

    Spontaneous breaking of rotational symmetry in superconductors

    Full text link
    We show that homogeneous superconductors with broken spin/isospin symmetry lower their energy via a transition to a novel superconducting state where the Fermi-surfaces are deformed to a quasi-ellipsoidal form at zero total momentum of Cooper pairs. In this state, the gain in the condensation energy of the pairs dominates over the loss in the kinetic energy caused by the lowest order (quadrupole) deformation of Fermi-surfaces from the spherically symmetric form. There are two energy minima in general, corresponding to the deformations of the Fermi-spheres into either prolate or oblate forms. The phase transition from spherically symmetric state to the superconducting state with broken rotational symmetry is of the first order.Comment: 5 pages, including 3 figures, published versio
    corecore