20 research outputs found

    The Combined Impact Of IgLON Family Proteins Lsamp And Neurotrimin On Developing Neurons And Behavioral Profiles In Mouse

    Get PDF
    Cell surface neural adhesion proteins are critical components in the complex orchestration of cell proliferation, apoptosis, and neuritogenesis essential for proper brain construction and behavior. We focused on the impact of two plasticity-associated IgLON family neural adhesion molecules, Neurotrimin (Ntm) and Limbic system associated membrane protein (Lsamp), on mouse behavior and its underlying neural development. Phenotyping neurons derived from the hippocampi of Lsamp−/−, Ntm−/− and Lsamp−/−Ntm−/− mice was performed in parallel with behavioral testing. While the anatomy of mutant brains revealed no gross changes, the Ntm−/− hippocampal neurons exhibited premature sprouting of neurites and manifested accelerated neurite elongation and branching. We propose that Ntm exerts an inhibitory impact on neurite outgrowth, whereas Lsamp appears to be an enhancer of the said process as premature neuritogenesis in Ntm−/− neurons is apparent only in the presence of Lsamp. We also show interplay between Lsamp and Ntm in regulating tissue homeostasis: the impact of Ntm on cellular proliferation was dependent on Lsamp, and Lsamp appeared to be a positive regulator of apoptosis in the presence of Ntm. Behavioral phenotyping indicated test-specific interactions between Lsamp and Ntm. The phenotypes of single mutant lines, such as reduced swimming speed in Morris water maze and increased activity in the elevated plus maze, were magnified in Lsamp−/−Ntm−/− mice. Altogether, evidence both from behavioral experiments and cultured hippocampal cells show combined and differential interactions between Ntm and Lsamp in the formation of hippocampal circuits and behavioral profiles. We demonstrate that mutual interactions between IgLON molecules regulate the initiation of neurite sprouting at very early ages, and even cell-autonomously, independent of their regulation of cell-cell adhesion

    Wfs1 Is Expressed In Dopaminoceptive Regions Of The Amniote Brain And Modulates Levels Of D1-Like Receptors

    Get PDF
    During amniote evolution, the construction of the forebrain has diverged across different lineages, and accompanying the structural changes, functional diversification of the homologous brain regions has occurred. This can be assessed by studying the expression patterns of marker genes that are relevant in particular functional circuits. In all vertebrates, the dopaminergic system is responsible for the behavioral responses to environmental stimuli. Here we show that the brain regions that receive dopaminergic input through dopamine receptor D1 are relatively conserved, but with some important variations between three evolutionarily distant vertebrate lines–house mouse (Mus musculus), domestic chick (Gallus gallus domesticus) / common quail (Coturnix coturnix) and red-eared slider turtle (Trachemys scripta). Moreover, we find that in almost all instances, those brain regions expressing D1-like dopamine receptor genes also express Wfs1. Wfs1 has been studied primarily in the pancreas, where it regulates the endoplasmic reticulum (ER) stress response, cellular Ca2+ homeostasis, and insulin production and secretion. Using radioligand binding assays in wild type and Wfs1-/- mouse brains, we show that the number of binding sites of D1-like dopamine receptors is increased in the hippocampus of the mutant mice. We propose that the functional link between Wfs1 and D1-like dopamine receptors is evolutionarily conserved and plays an important role in adjusting behavioral reactions to environmental stimuli

    Alternative Promoter Use Governs The Expression Of IgLON Cell Adhesion Molecules In Histogenetic Fields Of The Embryonic Mouse Brain

    Get PDF
    The members of the IgLON superfamily of cell adhesion molecules facilitate fundamental cellular communication during brain development, maintain functional brain circuitry, and are associated with several neuropsychiatric disorders such as depression, autism, schizophrenia, and intellectual disabilities. Usage of alternative promoter-specific 1a and 1b mRNA isoforms in Lsamp, Opcml, Ntm, and the single promoter of Negr1 in the mouse and human brain has been previously described. To determine the precise spatiotemporal expression dynamics of Lsamp, Opcml, Ntm isoforms, and Negr1, in the developing brain, we generated isoform-specific RNA probes and carried out in situ hybridization in the developing (embryonic, E10.5, E11.5, 13.5, 17; postnatal, P0) and adult mouse brains. We show that promoter-specific expression of IgLONs is established early during pallial development (at E10.5), where it remains throughout its differentiation through adulthood. In the diencephalon, midbrain, and hindbrain, strong expression patterns are initiated a few days later and begin fading after birth, being only faintly expressed during adulthood. Thus, the expression of specific IgLONs in the developing brain may provide the means for regionally specific functionality as well as for specific regional vulnerabilities. The current study will therefore improve the understanding of how IgLON genes are implicated in the development of neuropsychiatric disorders

    The Embryonic Transcriptome Of The Red-Eared Slider Turtle (Trachemys Scripta)

    Get PDF
    The bony shell of the turtle is an evolutionary novelty not found in any other group of animals, however, research into its formation has suggested that it has evolved through modification of conserved developmental mechanisms. Although these mechanisms have been extensively characterized in model organisms, the tools for characterizing them in non-model organisms such as turtles have been limited by a lack of genomic resources. We have used a next generation sequencing approach to generate and assemble a transcriptome from stage 14 and 17 Trachemys scripta embryos, stages during which important events in shell development are known to take place. The transcriptome consists of 231,876 sequences with an N-50 of 1,166 bp. GO terms and EC codes were assigned to the 61,643 unique predicted proteins identified in the transcriptome sequences. All major GO categories and metabolic pathways are represented in the transcriptome. Transcriptome sequences were used to amplify several cDNA fragments designed for use as RNA in situ probes. One of these, BMP5, was hybridized to a T. scripta embryo and exhibits both conserved and novel expression patterns. The transcriptome sequences should be of broad use for understanding the evolution and development of the turtle shell and for annotating any future T. scripta genome sequences

    Phenylketonuria in Portugal: Genotype-Phenotype Correlations Using Molecular, Biochemical, and Haplotypic Analyses

    Get PDF
    The impairment of the hepatic enzyme phenylalanine hydroxylase (PAH) causes elevation of phenylalanine levels in blood and other body fluids resulting in the most common inborn error of amino acid metabolism (phenylketonuria). Persistently high levels of phenylalanine lead to irreversible damage to the nervous system. Therefore, early diagnosis of the affected individuals is important, as it can prevent clinical manifestations of the disease.info:eu-repo/semantics/publishedVersio

    ISL1 Directly Regulates FGF10 Transcription during Human Cardiac Outflow Formation

    Get PDF
    The LIM homeodomain gene Islet-1 (ISL1) encodes a transcription factor that has been associated with the multipotency of human cardiac progenitors, and in mice enables the correct deployment of second heart field (SHF) cells to become the myocardium of atria, right ventricle and outflow tract. Other markers have been identified that characterize subdomains of the SHF, such as the fibroblast growth factor Fgf10 in its anterior region. While functional evidence of its essential contribution has been demonstrated in many vertebrate species, SHF expression of Isl1 has been shown in only some models. We examined the relationship between human ISL1 and FGF10 within the embryonic time window during which the linear heart tube remodels into four chambers. ISL1 transcription demarcated an anatomical region supporting the conserved existence of a SHF in humans, and transcription factors of the GATA family were co-expressed therein. In conjunction, we identified a novel enhancer containing a highly conserved ISL1 consensus binding site within the FGF10 first intron. ChIP and EMSA demonstrated its direct occupation by ISL1. Transcription mediated by ISL1 from this FGF10 intronic element was enhanced by the presence of GATA4 and TBX20 cardiac transcription factors. Finally, transgenic mice confirmed that endogenous factors bound the human FGF10 intronic enhancer to drive reporter expression in the developing cardiac outflow tract. These findings highlight the interest of examining developmental regulatory networks directly in human tissues, when possible, to assess candidate non-coding regions that may be responsible for congenital malformations

    Deletion of the Lsamp gene lowers sensitivity to stressful environmental manipulations in mice

    No full text
    The Lsamp gene gives rise to limbic system-associated membrane protein (LAMP), which is expressed on the surface of somata and proximal dendrites of neurons. Lsamp-deficient mice have been shown to be slightly hyperactive in novel environments and less anxious, and they display alterations in swimming speed, fear reaction, fear conditioning and social behaviour. In human studies, links between the LSAMP gene and several psychiatric disorders have been found and LSAMP has been established as a tumour suppressor gene. To study the impact of environmental manipulations on the phenotype, we exposed male Lsamp-deficient mice to environmental enrichment (EE), a technique that has often been shown to abolish phenotypic deviations in knockout mice, and to social isolation, a stressful manipulation, after which all the mice were tested in a behavioural battery. EE abolished differences between the genotypes in body weight and anogenital sniffing, a behaviour related to aggressiveness, and amplified the anxiolytic-like phenotype of Lsamp-deficient mice both in the plus maze and motility box. Isolation abolished differences between the genotypes in body weight and anxiety and amplified the differences in swimming speed and anogenital sniffing. EE and isolation failed to modify the results as compared to standard housing in whisker trimming, locomotor activity, marble burying and corticosterone levels. In conclusion, Lsamp-deficient mice were less sensitive to isolation stress than their wild-type littermates. Lack of LAMP protein seemingly leads to a deterioration in the ability to adapt to novel stressful environments and stimuli

    Trib3 is developmentally and nutritionally regulated in the brain but is dispensable for spatial memory, fear conditioning and sensing of amino acid-imbalanced diet.

    Get PDF
    Tribbles homolog 3 (TRIB3) is a mammalian pseudokinase that is induced in neuronal cell cultures in response to cell death-inducing stresses, including neurotrophic factor deprivation. TRIB3 is an inhibitor of activating transcription factor 4 (ATF4), the central transcriptional regulator in the eukaryotic translation initiation factor 2α (eIF2α) phosphorylation pathway that is involved in the cellular stress response and behavioral processes. In this article, we study the expression of Trib3 in the mouse brain, characterize the brain morphology of mice with a genetic ablation of Trib3 and investigate whether Trib3 deficiency alters eIF2α-dependent cognitive abilities. Our data show that the consumption of a leucine-deficient diet induces Trib3 expression in the anterior piriform cortex, the brain region responsible for detecting essential amino acid intake imbalance. However, the aversive response to leucine-devoid diet does not differ in Trib3 knockout and wild type mice. Trib3 deletion also does not affect long-term spatial memory and reversal learning in the Morris water maze and auditory or contextual fear conditioning. During embryonic development, Trib3 expression increases in the brain and persists in the early postnatal stadium. Neuroanatomical characterization of mice lacking Trib3 revealed enlarged lateral ventricles. Thus, although the absence of Trib3 does not alter the eIF2α pathway-dependent cognitive functions of several areas of the brain, including the hippocampus, amygdala and anterior piriform cortex, Trib3 may serve a role in other central nervous system processes and molecular pathways

    Myg1-deficient mice display alterations in stress-induced responses and reduction of sex-dependent behavioural differences

    No full text
    Myg1 (Melanocyte proliferating gene 1) is a highly conserved and ubiquitously expressed gene, which encodes a protein with mitochondrial and nuclear localization. In the current study we demonstrate a gradual decline of Myg1 expression during the postnatal development of the mouse brain that suggests relevance for Myg1 in developmental processes. To study the effects of Myg1 loss-of-function, we created Myg1-deficient (−/−) mice by displacing the entire coding sequence of the gene. Initial phenotyping, covering a multitude of behavioural, cognitive, neurological, physiological and stress-related responses, revealed that homozygous Myg1 (−/−) mice are vital, fertile and display no gross abnormalities. Myg1 (−/−) mice showed an inconsistent pattern of altered anxiety-like behaviour in different tests. The plus-maze and social interaction tests revealed that male Myg1 (−/−) mice were significantly less anxious than their wild-type littermates; female (−/−) mice showed increased anxiety in the locomotor activity arena. Restraint-stress significantly reduced the expression of the Myg1 gene in the prefrontal cortex of female wild-type mice and restrained female (−/−) mice showed a blunted corticosterone response, suggesting involvement of Myg1 in stress-induced responses. The main finding of the present study was that Myg1 invalidation decreases several behavioural differences between male and female animals that were obvious in wild-type mice, indicating that Myg1 contributes to the expression of sex-dependent behavioural differences in mice. Taken together, we provide evidence for the involvement of Myg1 in anxiety- and stress-related responses and suggest that Myg1 contributes to the expression of sex-dependent behavioural differences

    Characterization of MYG1 gene and protein: Subcellular distribution and function

    No full text
    Background information. MYG1 [Melanocyte proliferating gene 1, also known as Gamm1 (NM_021640)] is a recently described gene of unknown function. MYG1 orthologues are found in simple as well as complex eukaryotes. According to sequence homology, MYG1 is considered to have a metal‐dependent protein hydrolase (UPF0160) domain. The purpose of the present study was to determine the expression and subcellular localization of MYG1 protein and to identify physiological processes connected to MYG1 function. Results. Human and mouse MYG1 is ubiquitously expressed, with the highest level in the testis. Analysis of mouse embryos moreover revealed a uniform Myg1 expression at E (embryonic day) 8.5, but at E11.75 expression becomes restricted predominantly to the developing brain and eye, limb buds and tail region. MYG1 exhibits a mitochondrial targeting signal in the N‐terminal region and a Pat7‐type nuclear localization signal in the region between amino acids 33–39 and localizes to these compartments. No active shuttling of MYG1 between the nucleus and the mitochondria was detected and the distribution of MYG1 was not dependent on the phase of the cell cycle. Immunoprecipitation of C‐terminally FLAG‐tagged MYG1 from HeLa cells did not identify any co‐precipitated proteins. siRNA (short interfering RNA)‐mediated knockdown of MYG1 mRNA was mainly followed by changes in the level of transcripts encoding factors involved in developmental tissue patterning and growth as well as immune‐related processes. Conclusions. Taken together, we infer that MYG1 is a ubiquitous nucleo‐mitochondrial protein, with differential pattern and level of expression during embryonic development. MYG1 expression in normal adult tissues is stable and our data suggest MYG1 involvement in early developmental processes and also in adult stress/illness conditions
    corecore