581 research outputs found

    Ion structure in warm dense matter: benchmarking solutions of hypernetted-chain equations by first-principle simulations

    Get PDF
    We investigate the microscopic structure of strongly coupled ions in warm dense matter using ab initio simulations and hypernetted chain (HNC) equations. We demonstrate that an approximate treatment of quantum effects by weak pseudopotentials fails to describe the highly degenerate electrons in warm dense matter correctly. However, one-component HNC calculations for the ions agree well with first-principles simulations if a linearly screened Coulomb potential is used. These HNC results can be further improved by adding a short-range repulsion that accounts for bound electrons. Examples are given for recently studied light elements, lithium and beryllium, and for aluminum where the extra short-range repulsion is essential

    Assessing Rigid and Non-Rigid Spatial Thinking

    Get PDF

    Structure of strongly coupled, multi-component plasmas

    Get PDF
    We investigate the short-range structure in strongly coupled fluidlike plasmas using the hypernetted chain approach generalized to multicomponent systems. Good agreement with numerical simulations validates this method for the parameters considered. We found a strong mutual impact on the spatial arrangement for systems with multiple ion species which is most clearly pronounced in the static structure factor. Quantum pseudopotentials were used to mimic diffraction and exchange effects in dense electron-ion systems. We demonstrate that the different kinds of pseudopotentials proposed lead to large differences in both the pair distributions and structure factors. Large discrepancies were also found in the predicted ion feature of the x-ray scattering signal, illustrating the need for comparison with full quantum calculations or experimental verification

    Right place. Right time. Right tool: guidance for using target analysis to increase the likelihood of invasive species detection

    Get PDF
    In response to the National Invasive Species Council’s 2016–2018 Management Plan, this paper provides guidance on applying target analysis as part of a comprehensive framework for the early detection of and rapid response to invasive species (EDRR). Target analysis is a strategic approach for detecting one or more invasive species at a specific locality and time, using a particular method and/or technology(ies). Target analyses, which are employed across a wide range of disciplines, are intended to increase the likelihood of detection of a known target in order to maximize survey effectiveness and cost-efficiency. Although target analyses are not yet a standard approach to invasive species management, some federal agencies are employing target analyses in principle and/or in part to improve EDRR capacities. These initiatives can provide a foundation for a more standardized and comprehensive approach to target analyses. Guidance is provided for improving computational information. Federal agencies and their partners would benefit from a concerted effort to collect the information necessary to perform rigorous target analyses and make it available through open access platforms

    Effectiveness of a structured, framework-based approach to implementation: the Researching Effective Approaches to Cleaning in Hospitals (REACH) Trial.

    Get PDF
    BACKGROUND:Implementing sustainable practice change in hospital cleaning has proven to be an ongoing challenge in reducing healthcare associated infections. The purpose of this study was to develop a reliable framework-based approach to implement and quantitatively evaluate the implementation of evidence-based practice change in hospital cleaning. DESIGN/METHODS:The Researching Effective Approaches to Cleaning in Hospitals (REACH) trial was a pragmatic, stepped-wedge randomised trial of an environmental cleaning bundle implemented in 11 Australian hospitals from 2016 to 2017. Using a structured multi-step approach, we adapted the integrated Promoting Action on Research Implementation in Health Services (i-PARIHS) framework to support rigorous and tailored implementation of the cleaning bundle intervention in eleven diverse and complex settings. To evaluate the effectiveness of this strategy we examined post-intervention cleaning bundle alignment calculated as a score (an implementation measure) and cleaning performance audit data collected using ultraviolet (UV) gel markers (an outcome measure). RESULTS:We successfully implemented the bundle and observed improvements in cleaning practice and performance, regardless of hospital size, intervention duration and contextual issues such as staff and organisational readiness at baseline. There was a positive association between bundle alignment scores and cleaning performance at baseline. This diminished over the duration of the intervention, as hospitals with lower baseline scores were able to implement practice change successfully. CONCLUSION:Using a structured framework-based approach allows for pragmatic and successful implementation of clinical trials across diverse settings, and assists with quantitative evaluation of practice change. TRIAL REGISTRATION:Australia New Zealand Clinical Trial Registry ACTRN12615000325505, registered on 4 September 2015

    New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    Get PDF
    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many body physics. Unfortunately, the pair correlation function g(r)g(r) inferred from neutron scattering measurements of the differential cross section dσdΩd\sigma \over d\Omega from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1~meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra non-equilibrium component of orthohydrogen. Liquid parahydrogen is also a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.Comment: Edited for submission to Physical Review

    Nature of the N-Pd interaction in nitrogen-doped carbon nanotube catalysts

    Get PDF
    In this work, the geometric and electronic structure of N species in N-doped carbon nanotubes (NCNTs) is derived by X-ray photoemission (XPS) and absorption spectroscopy (NEXAFS) of the N 1s core excitation. Substitutional N species in pyridine-like configuration and another form of N with higher thermal stability are found in NCNTs. The structural configuration of the high thermally stable N species, in the literature often referred to as graphitic N, is assessed in this work by a combined theoretical and experimental study as a 3-fold substitutional N species in an NCNT basic structural unit (BSU). Furthermore, the nature of the interaction of those N species with a Pd metal center immobilized onto NCNTs is of σ-type donation from the filled π-orbital of the N atom to the empty d-orbital of the Pd atom and a π back donation from the filled Pd atomic d-orbital to the π* antibonding orbital of the N atom. We have found that the interaction of pyridine N with Pd is characterized by a charge transfer typical of a covalent chemical bond with partial ionic character, consistent with the chemical shift observed in the Pd 3d core level of divalent Pd. Graphitic N sites interact with Pd by a covalent bond without any charge redistribution. In this case, the electronic state of the Pd corresponds to metallic Pd nanoparticles electronically modified by the interaction with the support. The catalytic reactivity of these samples in hydrogenation, CO oxidation, and oxygen reduction reaction (ORR) allowed clarifying some aspects of the metal carbon support interaction in catalysis

    Phase coexistence of multiple copper oxides on AgCu catalysts during ethylene epoxidation

    Get PDF
    Alloy catalysts under reaction conditions are complex entities. In oxidizing atmospheres, multiple phases can coexist on a catalyst s surface as a result of phase segregation and preferential oxidation. Such a scenario can result in unusual substoichiometric and metastable phases that could play important roles in catalytic processes. For instance, AgCu alloys known to exhibit enhanced epoxide selectivity in partial oxidation of ethylene form an oxide like surface structure under reaction conditions. Under these conditions, copper oxides are stable, while silver oxides are not. Consequently, copper segregates to the alloy s surface and forms an oxide overlayer. Little is known about the structure or function of such overlayers, and it is unknown whether they play an active role in the catalyst s enhanced selectivity. In order to develop a clearer picture of such catalysts, the current work utilizes several in situ spectroscopic and microscopic techniques to examine the copper oxide phases that form when AgCu is exposed to epoxidation conditions. It is found that several forms of oxidic Cu coexist simultaneously on the active catalyst s surface, namely, CuO, Cu2O, and some previously unreported form of oxidized Cu, referred to here as CuxOy. Online product analysis, performed during the in situ spectroscopic measurements, shows that increased epoxide selectivity is correlated with the presence of mixed copper oxidation states and the presence of the CuxOy species. These results support previous theoretical predictions that oxidic copper overlayers on silver play an active role in epoxidation. These results furthermore emphasize the need for in situ spectromicroscopic methods to understand the complexity of alloy catalyst

    Neutron Beta Decay Studies with Nab

    Full text link
    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.Comment: Submitted to Proceedings of the Conference CIPANP12, St.Petersburg, Florida, May 201

    Sr Surface Enrichment in Solid Oxide Cells – Approaching the Limits of EDX Analysis by Multivariate Statistical Analysis and Simulations

    Get PDF
    In solid oxide cells, Sr segregation has been correlated with degradation. Yet, the atomistic mechanism remains unknown. Here we begin to localize the origin of Sr surface nucleation by combining force field based simulations, energy dispersive X-ray spectroscopy (EDX), and multi-variate statistical analysis. We find increased ion mobility in the complexion between yttria-stabilized zirconia and strontium-doped lanthanum manganite. Furthermore, we developed a robust and automated routine to detect localized nucleation seeds of Sr at the complexion surface. This hints at a mechanism originating at the complexion and requires in-depth studies at the atomistic level, where the developed routine can be beneficial for analyzing large hyperspectral EDX datasets
    corecore