107 research outputs found

    Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell

    Get PDF
    One of the major properties of the semi-synthetic minimal cell, as a model for early living cells, is the ability to self-reproduce itself, and the reproduction of the boundary layer or vesicle compartment is part of this process. A minimal bio-molecular mechanism based on the activity of one single enzyme, the FAS-B (Fatty Acid Synthase) Type I enzyme from Brevibacterium ammoniagenes, is encapsulated in 1-palmitoyl-2oleoyl-sn-glycero-3-phosphatidylcholine (POPC) liposomes to control lipid synthesis. Consequently molecules of palmitic acid released from the FAS catalysis, within the internal lumen, move toward the membrane compartment and become incorporated into the phospholipid bilayer. As a result the vesicle membranes change in lipid composition and liposome growth can be monitored. Here we report the first experiments showing vesicles growth by catalysis of one enzyme only that produces cell boundary from within. This is the prototype of the simplest autopoietic minimal cell

    Cell-Sized confinement in microspheres accelerates the reaction of gene expression

    Get PDF
    Cell-sized water-in-oil droplet covered by a lipid layer was used to understand how lipid membranes affect biochemical systems in living cells. Here, we report a remarkable acceleration of gene expression in a cell-sized water-in-oil droplet entrapping a cell-free translation system to synthesize GFP (green fluorescent protein). The production rate of GFP (VGFP) in each droplet remained almost constant at least for on the order of a day, which implies 0th-order reaction kinetics. Interestingly, VGFP was inversely proportional to radius of droplets (R) when R is under 50 μm, and VGFP in droplets with R ∼ 10 μm was more than 10 times higher than that in the bulk. The acceleration rates of GFP production in cell-sized droplets strongly depended on the lipid types. These results demonstrate that the membrane surface has the significant effect to facilitate protein production, especially when the scale of confinement is on the order of cell-size

    Dendritic Spike Saturation of Endogenous Calcium Buffer and Induction of Postsynaptic Cerebellar LTP

    Get PDF
    The architecture of parallel fiber axons contacting cerebellar Purkinje neurons retains spatial information over long distances. Parallel fiber synapses can trigger local dendritic calcium spikes, but whether and how this calcium signal leads to plastic changes that decode the parallel fiber input organization is unknown. By combining voltage and calcium imaging, we show that calcium signals, elicited by parallel fiber stimulation and mediated by voltage-gated calcium channels, increase non-linearly during high-frequency bursts of electrically constant calcium spikes, because they locally and transiently saturate the endogenous buffer. We demonstrate that these non-linear calcium signals, independently of NMDA or metabotropic glutamate receptor activation, can induce parallel fiber long-term potentiation. Two-photon imaging in coronal slices revealed that calcium signals inducing long-term potentiation can be observed by stimulating either the parallel fiber or the ascending fiber pathway. We propose that local dendritic calcium spikes, evoked by synaptic potentials, provide a unique mechanism to spatially decode parallel fiber signals into cerebellar circuitry changes

    Antigen-expressing immunostimulatory liposomes as a genetically programmable synthetic vaccine

    Get PDF
    Liposomes are versatile (sub)micron-sized membrane vesicles that can be used for a variety of applications, including drug delivery and in vivo imaging but they also represent excellent models for artificial membranes or cells. Several studies have demonstrated that in vitro transcription and translation can take place inside liposomes to obtain compartmentalized production of functional proteins within the liposomes (Kita et al. in Chembiochem 9(15):2403–2410, 2008; Moritani et al.in FEBS J, 2010; Kuruma et al. in Methods Mol Biol 607:161–171, 2010; Murtas et al. in Biochem Biophys Res Commun 363(1):12–17, 2007; Sunami et al. in Anal Biochem 357(1):128–136, 2006; Ishikawa et al. in FEBS Lett 576(3):387–390, 2004; Oberholzer et al. in Biochem Biophys Res Commun 261(2):238–241, 1999). Such a minimal artificial cell-based model is ideal for synthetic biology based applications. In this study, we propose the use of liposomes as artificial microbes for vaccination. These artificial microbes can be genetically programmed to produce specific antigens at will. To show proof-of-concept for this artificial cell-based platform, a bacterial in vitro transcription and translation system together with a gene construct encoding the model antigen β-galactosidase were entrapped inside multilamellar liposomes. Vaccination studies in mice showed that such antigen-expressing immunostimulatory liposomes (AnExILs) elicited higher specific humoral immune responses against the produced antigen (β-galactosidase) than control vaccines (i.e. AnExILs without genetic input, liposomal β-galactosidase or pDNA encoding β-galactosidase). In conclusion, AnExILs present a new platform for DNA-based vaccines which combines antigen production, adjuvanticity and delivery in one system and which offer several advantages over existing vaccine formulations

    Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40V and G45E mutations that cause keratitis ichthyosis deafness syndrome

    Get PDF
    Mutations in GJB2, which encodes Cx26, are one of the most common causes of inherited deafness in humans. More than 100 mutations have been identified scattered throughout the Cx26 protein, most of which cause nonsyndromic sensorineural deafness. In a subset of mutations, deafness is accompanied by hyperkeratotic skin disorders, which are typically severe and sometimes fatal. Many of these syndromic deafness mutations localize to the amino-terminal and first extracellular loop (E1) domains. Here, we examined two such mutations, A40V and G45E, which are positioned near the TM1/E1 boundary and are associated with keratitis ichthyosis deafness (KID) syndrome. Both of these mutants have been reported to form hemichannels that open aberrantly, leading to “leaky” cell membranes. Here, we quantified the Ca2+ sensitivities and examined the biophysical properties of these mutants at macroscopic and single-channel levels. We find that A40V hemichannels show significantly impaired regulation by extracellular Ca2+, increasing the likelihood of aberrant hemichannel opening as previously suggested. However, G45E hemichannels show only modest impairment in regulation by Ca2+ and instead exhibit a substantial increase in permeability to Ca2+. Using cysteine substitution and examination of accessibility to thiol-modifying reagents, we demonstrate that G45, but not A40, is a pore-lining residue. Both mutants function as cell–cell channels. The data suggest that G45E and A40V are hemichannel gain-of-function mutants that produce similar phenotypes, but by different underlying mechanisms. A40V produces leaky hemichannels, whereas G45E provides a route for excessive entry of Ca2+. These aberrant properties, alone or in combination, can severely compromise cell integrity and lead to increased cell death

    Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer

    Get PDF
    Clinical resistance to the second-generation antiandrogen enzalutamide in castration resistant prostate cancer (CRPC), despite persistent androgen receptor (AR) activity in tumors, highlights the unmet medical need for next generation antagonists. We have identified and characterized tetra-aryl cyclobutanes (CBs) as a new class of competitive AR antagonists that exhibit a unique mechanism of action. These CBs are structurally distinct from current antiandrogens (hydroxyflutamide, bicalutamide, and enzalutamide), and inhibit AR-mediated gene expression, cell proliferation, and tumor growth in several models of CRPC. Conformational profiling revealed that CBs stabilize an AR conformation resembling an unliganded receptor. Using a variety of techniques, it was determined that the AR:CB complex was not recruited to AR-regulated promoters and, like apo AR, remains sequestered in the cytoplasm bound to heat shock proteins. Thus, we have identified third generation AR antagonists whose unique mechanism of action suggests that they may have therapeutic potential in CRPC

    Why High-Performance Modelling and Simulation for Big Data Applications Matters

    Get PDF
    Modelling and Simulation (M&S) offer adequate abstractions to manage the complexity of analysing big data in scientific and engineering domains. Unfortunately, big data problems are often not easily amenable to efficient and effective use of High Performance Computing (HPC) facilities and technologies. Furthermore, M&S communities typically lack the detailed expertise required to exploit the full potential of HPC solutions while HPC specialists may not be fully aware of specific modelling and simulation requirements and applications. The COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications has created a strategic framework to foster interaction between M&S experts from various application domains on the one hand and HPC experts on the other hand to develop effective solutions for big data applications. One of the tangible outcomes of the COST Action is a collection of case studies from various computing domains. Each case study brought together both HPC and M&S experts, giving witness of the effective cross-pollination facilitated by the COST Action. In this introductory article we argue why joining forces between M&S and HPC communities is both timely in the big data era and crucial for success in many application domains. Moreover, we provide an overview on the state of the art in the various research areas concerned
    corecore