435 research outputs found

    Neurofilament results for the phase II neuroprotection study of phenytoin in optic neuritis

    Get PDF
    Background: A randomized trial of phenytoin in acute optic neuritis (ON) demonstrated a 30% reduction in retinal nerve fiber layer (RNFL) loss with phenytoin versus placebo. Here we present the corresponding serum neurofilament analyses. Methods: Eighty-six acute ON cases were randomized to receive phenytoin (4–6 mg/kg/day) or placebo for 3 months, and followed up for 6 months. Serum was collected at baseline, 3 and 6 months for analysis of neurofilament heavy chain (NfH) and neurofilament light chain (NfL). Results: Sixty-four patients had blood sampling. Of these, 58 and 56 were available at 3 months, and 55 and 54 were available at 6 months for NfH and NfL, respectively. There was no significant correlation between serum NfH and NfL at the time points tested. For NfH, the difference in mean placebo – phenytoin was −44 pg/ml at 3 months (P = 0.019) and −27 pg/ml at 6 months (P = 0.234). For NfL, the difference was 1.4 pg/ml at 3 months (P = 0.726) and −1.6 pg/ml at 6 months (P = 0.766). Conclusions: At 3 months, there was a reduction in NfH, but not NFL, in the phenytoin versus placebo group, while differences at 6 months were not statistically significant. This suggests a potential neuroprotective role for phenytoin in acute ON, with the lower NfH at 3 months, when levels secondary to degeneration of the anterior visual pathway are still elevated, but not at 6 months, when levels have normalized

    Gut microbiota composition as a candidate risk factor for dimethyl fumarate-induced lymphopenia in multiple sclerosis

    Full text link
    Mounting evidence points towards a pivotal role of gut microbiota in multiple sclerosis (MS) pathophysiology. Yet, whether disease-modifying treatments alter microbiota composition and whether microbiota shape treatment response and side-effects remain unclear. In this prospective observational pilot study, we assessed the effect of dimethyl fumarate (DMF) on gut microbiota and on host/microbial metabolomics in a cohort of 20 MS patients. Combining state-of-the-art microbial sequencing, metabolome mass spectrometry, and computational analysis, we identified longitudinal changes in gut microbiota composition under DMF-treatment and an increase in citric acid cycle metabolites. Notably, DMF-induced lymphopenia, a clinically relevant safety concern, was correlated with distinct baseline microbiome signatures in MS patients. We identified gastrointestinal microbiota as a key therapeutic target for metabolic properties of DMF. By characterizing gut microbial composition as a candidate risk factor for DMF-induced lymphopenia, we provide novel insights into the role of microbiota in mediating clinical side-effects

    CSF neurofilament light chain reflects corticospinal tract degeneration in ALS

    Get PDF
    Objective: Diffusion tensor imaging (DTI) is sensitive to white matter tract pathology. A core signature involving the corticospinal tracts (CSTs) has been identified in amyotrophic lateral sclerosis (ALS). Raised neurofilament light chain protein (NfL) in cerebrospinal fluid (CSF) is thought to reflect axonal damage in a range of neurological disorders. The relationship between these two measures was explored. Methods: CSF and serum NfL concentrations and DTI acquired at 3 Tesla on the same day were obtained from ALS patients (n = 25 CSF, 40 serum) and healthy, age-similar controls (n = 17 CSF, 25 serum). Within-group correlations between NfL and DTI measures of microstructural integrity in major white matter tracts (CSTs, superior longitudinal fasciculi [SLF], and corpus callosum) were performed using tract-based spatial statistics. Results: NfL levels were higher in patients compared to controls. CSF levels correlated with clinical upper motor neuron burden and rate of disease progression. Higher NfL levels were significantly associated with lower DTI fractional anisotropy and increased radial diffusivity in the CSTs of ALS patients, but not in controls. Interpretation: Elevated CSF and serum NfL is, in part, a result of CST degeneration in ALS. This highlights the wider potential for combining neurochemical and neuroimaging-based biomarkers in neurological disease.The project was funded by The Motor Neurone Disease Association (Malaspina/ Apr13/6097), Barts and The London Charities (468/1714). The Oxford MND Centre (M. R. T., K. T.) receives funding from the Motor Neurone Disease Association U. K. M. R. T. is funded by the Medical Research Council & Motor Neurone Disease Association Lady Edith Wolfson Fellowship (G0701923 and MR/K01014X/1), and E. G. through the PROMISES project award to M. R. T. by the Thierry Latran Foundation. J. K. is funded by an ECTRIMS Research Fellowship Programme and by the Research Funds of the University of Basel, Switzerland

    Observing Each Other's Observations in a Bayesian Coordination Game

    Full text link
    We study a Bayesian coordination game where agents receive private information on the game's payoff structure. In addition, agents receive private signals that inform them of each other's private information. We show that once agents possess these different types of information, there exists a coordination game in the evaluation of this information. Even though the precisions of both signal types is exogenous, the precision with which agents forecast each other's actions in equilibrium turns out to be endogenous. As a consequence, there exist multiple equilibria which differ with regard to the way that agents weight their private information to forecast each other's actions. Finally, even though all players' signals are of identical quality, it turns out that efficient equilibria are asymmetric

    Microbial Community Responses to Alterations in Historical Fire Regimes in Montane Grasslands

    Get PDF
    The influence of fire regimes on soil microbial diversity in montane grasslands is a relatively unexplored area of interest. Understanding the belowground diversity is a crucial stepping-stone toward unravelling community dynamics, nutrient sequestration, and overall ecosystem stability. In this study, metabarcoding was used to unravel the impact of fire disturbance regimes on bacterial and arbuscular mycorrhizal fungal community structures in South African montane grasslands that have been subjected to an intermediate (up to five years) term experimental fire-return interval gradient. Bacterial communities in this study exhibited a shift in composition in soils subjected to annual and biennial fires compared to the controls, with carbon and nitrogen identified as significant potential chemical drivers of bacterial communities. Shifts in relative abundances of dominant fungal operational taxonomic units were noted, with Glomeromycota as the dominant arbuscular mycorrhiza observed across the fire-return gradient. A reduction in mycorrhizal root colonisation was also observed in frequently burnt autumnal grassland plots in this study. Furthermore, evidence of significant mutualistic interactions between bacteria and fungi that may act as drivers of the observed community structure were detected. Through this pilot study, we can show that fire regime strongly impacts bacterial and fungal communities in southern African montane grasslands, and that changes to their usually resilient structure are mediated by seasonal burn patterns, chemical drivers, and mutualistic interactions between these two groups

    The potential of neurofilaments analysis using dry-blood and plasma spots

    Get PDF
    The lack of biomarkers for an early diagnosis of neurodegenerative disorders (NDs) has hampered the development of therapeutics whose effect would be enhanced by a timely intervention. Neurofilaments light chain (Nf-L), an integral part of the axonal structure, has emerged as a robust fluid biomarker for fatal neurodegenerative disorders like amyotrophic lateral sclerosis (ALS). To facilitate large-scale studies into early-stage neurodegeneration, reduce costs of samples collection/processing and cold-chain storage, we describe the measurement of Nf-L in blood fractions obtained from dry blood spots (DBS) and dry plasma spots (DPS), two filter paper-based remote blood collection tools. To test the feasibility of using this approach, Nf-L analysis in DBS/DPS is compared to that in plasma obtained from the same blood sample, looking at Nf-L discriminatory power in the clinical stratification of ALS compared to healthy controls. With the best pre-analytical treatment for total protein recovery and using highly sensitive immunoassays, we report the detection of different Nf-L levels in DBS elute compared to reference plasma and DPS from the same blood samples. However, Nf-L measurement in DBS elutes provides a very good discrimination of ALS from healthy controls which is comparable to that obtained using plasma Nf-L assays. With the available immunodetection methods, we show that Nf-L measurement based on DPS microsampling is similar to that in plasma. The filter-paper biophysical characteristics and the interference of high haemoglobin concentration released by erythrocyte lysis is likely to perturb Nf-L detection in DBS elute. Further studies into DBS-based Nf-L detection and its analytical optimization are needed to make this method suitable for routine Nf-L blood analyses in neurodegeneration

    Soluble Beta-Amyloid Precursor Protein Is Related to Disease Progression in Amyotrophic Lateral Sclerosis

    Get PDF
    Background: Biomarkers of disease progression in amyotrophic lateral sclerosis (ALS) could support the identification of beneficial drugs in clinical trials. We aimed to test whether soluble fragments of beta-amyloid precursor protein (sAPPa and sAPPß) correlated with clinical subtypes of ALS and were of prognostic value. Methodology/Principal Findings: In a cross-sectional study including patients with ALS (N = 68) with clinical follow-up data over 6 months, Parkinson’s disease (PD, N = 20), and age-matched controls (N = 40), cerebrospinal fluid (CSF) levels of sAPPa a, sAPPß and neurofilaments (NfH SMI35) were measured by multiplex assay, Progranulin by ELISA. CSF sAPPa and sAPPß levels were lower in ALS with a rapidly-progressive disease course (p = 0.03, and p = 0.02) and with longer disease duration (p = 0.01 and p = 0.01, respectively). CSF NfH SMI35 was elevated in ALS compared to PD and controls, with highest concentrations found in patients with rapid disease progression (p,0.01). High CSF NfH SMI3 was linked to low CSF sAPPa and sAPPß (p = 0.001, and p = 0.007, respectively). The ratios CSF NfH SMI35 /CSF sAPPa,-ß were elevated in patients with fast progression of disease (p = 0.002 each). CSF Progranulin decreased with ongoing disease (p = 0.04). Conclusions: This study provides new CSF candidate markers associated with progression of disease in ALS. The data suggest that a deficiency of cellular neuroprotective mechanisms (decrease of sAPP) is linked to progressive neuro-axona

    GAMER MRI: Gated-attention mechanism ranking of multi-contrast MRI in brain pathology.

    Get PDF
    During the last decade, a multitude of novel quantitative and semiquantitative MRI techniques have provided new information about the pathophysiology of neurological diseases. Yet, selection of the most relevant contrasts for a given pathology remains challenging. In this work, we developed and validated a method, Gated-Attention MEchanism Ranking of multi-contrast MRI in brain pathology (GAMER MRI), to rank the relative importance of MR measures in the classification of well understood ischemic stroke lesions. Subsequently, we applied this method to the classification of multiple sclerosis (MS) lesions, where the relative importance of MR measures is less understood. GAMER MRI was developed based on the gated attention mechanism, which computes attention weights (AWs) as proxies of importance of hidden features in the classification. In the first two experiments, we used Trace-weighted (Trace), apparent diffusion coefficient (ADC), Fluid-Attenuated Inversion Recovery (FLAIR), and T1-weighted (T1w) images acquired in 904 acute/subacute ischemic stroke patients and in 6,230 healthy controls and patients with other brain pathologies to assess if GAMER MRI could produce clinically meaningful importance orders in two different classification scenarios. In the first experiment, GAMER MRI with a pretrained convolutional neural network (CNN) was used in conjunction with Trace, ADC, and FLAIR to distinguish patients with ischemic stroke from those with other pathologies and healthy controls. In the second experiment, GAMER MRI with a patch-based CNN used Trace, ADC and T1w to differentiate acute ischemic stroke lesions from healthy tissue. The last experiment explored the performance of patch-based CNN with GAMER MRI in ranking the importance of quantitative MRI measures to distinguish two groups of lesions with different pathological characteristics and unknown quantitative MR features. Specifically, GAMER MRI was applied to assess the relative importance of the myelin water fraction (MWF), quantitative susceptibility mapping (QSM), T1 relaxometry map (qT1), and neurite density index (NDI) in distinguishing 750 juxtacortical lesions from 242 periventricular lesions in 47 MS patients. Pair-wise permutation t-tests were used to evaluate the differences between the AWs obtained for each quantitative measure. In the first experiment, we achieved a mean test AUC of 0.881 and the obtained AWs of FLAIR and the sum of AWs of Trace and ADC were 0.11 and 0.89, respectively, as expected based on previous knowledge. In the second experiment, we achieved a mean test F1 score of 0.895 and a mean AW of Trace = 0.49, of ADC = 0.28, and of T1w = 0.23, thereby confirming the findings of the first experiment. In the third experiment, MS lesion classification achieved test balanced accuracy = 0.777, sensitivity = 0.739, and specificity = 0.814. The mean AWs of T1map, MWF, NDI, and QSM were 0.29, 0.26, 0.24, and 0.22 (p < 0.001), respectively. This work demonstrates that the proposed GAMER MRI might be a useful method to assess the relative importance of MRI measures in neurological diseases with focal pathology. Moreover, the obtained AWs may in fact help to choose the best combination of MR contrasts for a specific classification problem

    The Swiss Multiple Sclerosis Cohort-Study (SMSC): A Prospective Swiss Wide Investigation of Key Phases in Disease Evolution and New Treatment Options.

    Get PDF
    The mechanisms leading to disability and the long-term efficacy and safety of disease modifying drugs (DMDs) in multiple sclerosis (MS) are unclear. We aimed at building a prospective cohort of MS patients with standardized collection of demographic, clinical, MRI data and body fluids that can be used to develop prognostic indicators and biomarkers of disease evolution and therapeutic response. The Swiss MS Cohort (SMSC) is a prospective observational study performed across seven Swiss MS centers including patients with MS, clinically isolated syndrome (CIS), radiologically isolated syndrome or neuromyelitis optica. Neurological and radiological assessments and biological samples are collected every 6-12 months. We recruited 872 patients (clinically isolated syndrome [CIS] 5.5%, relapsing-remitting MS [RRMS] 85.8%, primary progressive MS [PPMS] 3.5%, secondary progressive MS [SPMS] 5.2%) between June 2012 and July 2015. We performed 2,286 visits (median follow-up 398 days) and collected 2,274 serum, plasma and blood samples, 152 cerebrospinal fluid samples and 1,276 brain MRI scans. 158 relapses occurred and expanded disability status scale (EDSS) scores increased in PPMS, SPMS and RRMS patients experiencing relapses. Most RRMS patients were treated with fingolimod (33.4%), natalizumab (24.5%) or injectable DMDs (13.6%). The SMSC will provide relevant information regarding DMDs efficacy and safety and will serve as a comprehensive infrastructure available for nested research projects
    corecore