205 research outputs found

    Two-band ferromagnetic Kondo-lattice model for local-moment half-metals

    Full text link
    We introduce a two-band Kondo-lattice model to describe ferromagnetic half-metals with local magnetic moments. In a model study, the electronic and magnetic properties are presented by temperature dependent magnetization curves, band-structures, spin polarizations and plasma frequencies. These are obtained from numerically evaluated equations, based on the single-electron Green functions. We show that the mutual influence between the itinerant electrons and the local magnetic moments is responsible for several phase transitions of the half-metals, namely first and second order magnetic phase transitions, as well as half-metal to semiconductor and half-metal to semimetal transitions.Comment: 10 pages, 5 figures, submitted to Journal of Physics: Condensed Matte

    Vanadium centers in ZnTe crystals. II. Electron paramagnetic resonance

    Get PDF
    Four V-related electron-paramagnetic-resonance (EPR) spectra are observed in Bridgman-grown ZnTe doped with vanadium. Two of them are attributed to the charge states VZn3+(A+) and VZn2+(A0) of the isolated V impurity. For the ionized donor, VZn3+(A+), the spectrum reveals the typical behavior of the expected 3A2(F) ground state in tetrahedral symmetry. The incorporation on a cation lattice site could be proved by the resolved superhyperfine interaction with four Te ions. The second spectrum showing triclinic symmetry and S=3/2 is interpreted as the neutral donor state VZn2+(A0). The origin of the triclinic distortion of the cubic (Td) crystal field could be a static Jahn-Teller effect. The two additionally observed EPR spectra are attributed to nearest-neighbor V-related defect pairs. The spectrum of the first one, V2+Zn-YTe, shows trigonal symmetry and can be explained by the S=3/2 manifold of an orbital singlet ground state. An associated defect "YTe" is responsible for the trigonal distortion of the tetrahedral crystal field of V2+Zn. The spectrum of the second pair defect also shows trigonal symmetry and can be described by S=1/2. The ground-state manifold implies a VZn3+−XTe pair as the most probable origin of this spectrum. The S=1/2 ground state is produced by a dominating isotropic exchange interaction coupling the S=1 ground-state manifold of V3+Zn to an assumed S=1/2 ground state of "XTe" in antiferromagnetic orientation. The nature of the associated defects "YTe" and "XTe" remains unknown for both pairs since no hyperfine structure has been observed, but most probably acceptorlike defects are involved

    Vanadium centers in ZnTe crystals. I. Optical properties

    Get PDF
    In ZnTe:V bulk crystals with nominal vanadium concentrations between 1000 and 7000 ppm three vanadium-ion states V+, V2+, and V3+ were found in low-temperature optical measurements. No-phonon lines of the internal emissions were detected for the 5E(D)→5T2(D) transition of V+(d4) at 3401 cm−1 (0.422 eV), for 4T2(F)→4T1(F) of V2+(d3) at 4056 cm−1 (0.503 eV), and for 3T2(F)→3A2(F) of V3+(d2) at 4726 cm−1 (0.586 eV). The energies of the internal transitions are reduced with respect to the corresponding transitions in ZnS:V and ZnSe:V. The respective excitation spectra display, in addition to broad charge-transfer bands, higher excited levels of the individual charge states. Crystal-field calculations of the detected transition energies based on the Tanabe-Sugano scheme are presented. With the help of sensitization experiments, a one-electron model is designed, in which the donor level (V2+/V3+) is situated 12 500 cm−1 (1.55 eV) below the conduction-band edge and the acceptor level (V2+/V+) 9400 cm−1 (1.17 eV) above the valence-band edge. The dynamical behavior of the three infrared lurainescence bands was measured. Decay time constants of 43 ÎŒs (V+), 120 ÎŒs (V2+), and 420 ÎŒs (V3+) were found. Electron-paramagnetic-resonance (EPR) results measured on the same samples are presented in an accompanying paper and confirm the optical detection of isolated substitutional V2+(d3) and V3+(d2) ions. Relations between the EPR and optical results are discussed

    Predictive Value of Total Metabolic Tumor Burden Prior to Treatment in NSCLC Patients Treated with Immune Checkpoint Inhibition

    Get PDF
    Objectives: We aimed to assess the predictive value of the total metabolic tumor burden prior to treatment in patients with advanced non-small-cell lung cancer (NSCLC) receiving immune checkpoint inhibitors (ICIs). Methods: Pre-treatment 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (PET/CT) scans performed in two consecutive years for staging in adult patients with confirmed NSCLC were considered. Volume, maximum/mean standardized uptake value (SUVmax/SUVmean), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were assessed per delineated malignant lesion (including primary tumor, regional lymph nodes and distant metastases) in addition to the morphology of the primary tumor and clinical data. Total metabolic tumor burden was captured by totalMTV and totalTLG. Overall survival (OS), progression-free survival (PFS) and clinical benefit (CB) were used as endpoints for response to treatment. Results: A total of 125 NSCLC patients were included. Osseous metastases were the most frequent distant metastases (n = 17), followed by thoracal distant metastases (pulmonal = 14 and pleural = 13). Total metabolic tumor burden prior to treatment was significantly higher in patients treated with ICIs (mean totalMTV ± standard deviation (SD) 72.2 ± 78.7; mean totalTLG ± SD 462.2 ± 538.9) compared to those without ICI treatment (mean totalMTV ± SD 58.1 ± 233.8; mean totalTLG ± SD 290.0 ± 784.2). Among the patients who received ICIs, a solid morphology of the primary tumor on imaging prior to treatment was the strongest outcome predictor for OS (Hazard ratio HR 28.04, p < 0.01), PFS (HR 30.89, p < 0.01) and CB (parameter estimation PE 3.46, p < 0.01), followed by the metabolic features of the primary tumor. Interestingly, total metabolic tumor burden prior to immunotherapy showed a negligible impact on OS (p = 0.04) and PFS (p = 0.01) after treatment given the hazard ratios of 1.00, but also on CB (p = 0.01) given the PE < 0.01. Overall, biomarkers on pre-treatment PET/CT scans showed greater predictive power in patients receiving ICIs, compared to patients without ICI treatment. Conclusions: Morphological and metabolic properties of the primary tumors prior to treatment in advanced NSCLC patients treated with ICI showed great outcome prediction performances, as opposed to the pre-treatment total metabolic tumor burdens, captured by totalMTV and totalTLG, both with negligible impact on OS, PFS and CB. However, the outcome prediction performance of the total metabolic tumor burden might be influenced by the value itself (e.g., poorer prediction performance at very high or very low values of total metabolic tumor burden). Further studies including subgroup analysis with regards to different values of total metabolic tumor burden and their respective outcome prediction performances might be needed.Peer Reviewe

    Additional Primary Tumors Detected Incidentally on FDG PET/CT at Staging in Patients with First Diagnosis of NSCLC: Frequency, Impact on Patient Management and Survival

    Get PDF
    We aimed to assess the frequency of additional primary malignancies detected incidentally on [18F]fluoro-D-glucose positron emission tomography/computed tomography (FDG-PET/CT) at staging in NSCLC patients. Moreover, their impact on patient management and survival was assessed. Consecutive NSCLC patients with available staging FDG-PET/CT between 2020 and 2021 were retrospectively enrolled. We reported whether further investigations of suspicious findings presumably not related to NSCLC were recommended and performed after FDG-PET/CT. Any additional imaging, surgery or multimodal management was considered as an impact on patient management. Patient survival was defined using overall survival OS and progression-free survival PFS. A total of 125 NSCLC patients were included, while 26 findings in 26 different patients were suspicious for an additional malignancy on FDG-PET/CT at staging. The most frequent anatomical site was the colon. A total of 54.2% of all additional suspicious lesions turned out to be malignant. Almost every malignant finding had an impact on patient management. No significant differences were found between NSCLC patients with suspicious findings versus no suspicious findings with regards to their survival. FDG-PET/CT performed for staging might be a valuable tool to identify additional primary tumors in NSCLC patients. Identification of additional primary tumors might have substantial implications for patient management. An early detection together with interdisciplinary patient management could prevent a worsening of survival compared to patients with NSCLC only.Peer Reviewe

    First observation of two hyperfine transitions in antiprotonic He-3

    Get PDF
    We report on the first experimental results for microwave spectroscopy of the hyperfine structure of antiprotonic He-3. Due to the helium nuclear spin, antiprotonic He-3 has a more complex hyperfine structure than antiprotonic He-4 which has already been studied before. Thus a comparison between theoretical calculations and the experimental results will provide a more stringent test of the three-body quantum electrodynamics (QED) theory. Two out of four super-super-hyperfine (SSHF) transition lines of the (n,L)=(36,34) state were observed. The measured frequencies of the individual transitions are 11.12559(14) GHz and 11.15839(18) GHz, less than 1 MHz higher than the current theoretical values, but still within their estimated errors. Although the experimental uncertainty for the difference of these frequencies is still very large as compared to that of theory, its measured value agrees with theoretical calculations. This difference is crucial to be determined because it is proportional to the magnetic moment of the antiproton.Comment: 8 pages, 6 figures, just published (online so far) in Physics Letters

    Experimental observation of flow fields around active Janus spheres

    Get PDF
    The phoretic mechanisms at stake in the propulsion of asymmetric colloids have been the subject of debates during the past years. In particular, the importance of electrokinetic effects on the motility of Pt-PS Janus sphere was recently discussed. Here, we probe the hydrodynamic flow field around a catalytically active colloid using particle tracking velocimetry both in the freely swimming state and when kept stationary with an external force. Our measurements provide information about the fluid velocity in the vicinity of the surface of the colloid, and confirm a mechanism for propulsion that was proposed recently. In addition to offering a unified understanding of the nonequilibrium interfacial transport processes at stake, our results open the way to a thorough description of the hydrodynamic interactions between such active particles and understanding their collective dynamics

    Predictive value of FDG-PET in patients with advanced medullary thyroid cancer undergoing vandetanib treatment

    Get PDF
    Introduction: The prognosis of medullary thyroid carcinoma (MTC) is poor using common chemotherapeutic approaches. However, during the last years encouraging results of recently introduced tyrosine kinase inhibitors (TKI) such as vandetanib have been published. In this study we aimed to correlate the results of 18^{18}F-fluorodeoxyglucose ([18^{18}F]FDG) positron emission tomography (PET) imaging with treatment outcome. Methods: Eighteen patients after thyroidectomy with recurrent/advanced MTC lesions receiving vandetanib (300 mg orally/day) could be analysed. A baseline 18^{18}F-FDG PET prior to and a follow-up 18^{18}F-FDG PET 3 months after TKI initiation were performed. During follow-up, tumor progression was assessed every 3 months including computed tomography according to RECIST. Progression-free survival (PFS) was correlated with the maximum standardized uptake value of 18^{18}F-FDG in lymph nodes (SUV(LN)max) or visceral metastases (SUV(MTS)max) as well as with clinical parameters using ROC analysis. Results: Within median 3.6 years of follow-up, 9 patients showed disease progression at median 8.5 months after TKI initiation. An elevated glucose consumption assessed by baseline 18^{18}F-FDG PET (SUV(LN)max > 7.25) could predict a shorter PFS (2 y) with an accuracy of 76.5% (SUV(LN)max 2.7) also demonstrated an unfavorable prognosis (accuracy, 85.7%). On the other hand, none of the clinical parameters reached significance in response prediction. Conclusions: In patients with advanced and progressive MTC, tumors with higher metabolic activity at baseline are more aggressive and more prone to progression as reflected by a shorter PFS; they should be monitored more closely. Preserved glucose consumption 3 months after treatment initiation was also related to poorer prognosis

    Hybrid integration of III/V lasers on a silicon-on-insulator (SOI) optical board

    Get PDF
    Abstract: Heterogeneous integration of III-V semiconductor materials on a silicon-on-insulator (SOI) platform has recently emerged as one of the most promising methods for the fabrication of active photonic devices in silicon photonics. For this integration, it is essential to have a reliable and robust bonding procedure, which also provides a uniform and ultra-thin bonding layer for an effective optical coupling between III-V active layers and SOI waveguides. A new process for bonding of III-V dies to processed siliconon-insulator waveguide circuits using divinylsiloxane-bis-benzocyclobutene (DVS-BCB) was developed using a commercial wafer bonder. This &quot;cold bonding&quot; method significantly simplifies the bonding preparation for machine-based bonding both for die and wafer-scale bonding. High-quality bonding, with ultra-thin bonding layers (&lt;50 nm) is demonstrated, which is suitable for the fabrication of heterogeneously integrated photonic devices, specifically hybrid III-V/Si lasers. K. Mayora, &quot;Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,&quot; J. Micromech. Microeng. 14(7), 1047-1056 (200
    • 

    corecore