73 research outputs found

    A Novel Acyl-CoA Beta-Transaminase Characterized from a Metagenome

    Get PDF
    BACKGROUND: Bacteria are key components in all ecosystems. However, our knowledge of bacterial metabolism is based solely on the study of cultivated organisms which represent just a tiny fraction of microbial diversity. To access new enzymatic reactions and new or alternative pathways, we investigated bacterial metabolism through analyses of uncultivated bacterial consortia. METHODOLOGY/PRINCIPAL FINDINGS: We applied the gene context approach to assembled sequences of the metagenome of the anaerobic digester of a municipal wastewater treatment plant, and identified a new gene which may participate in an alternative pathway of lysine fermentation. CONCLUSIONS: We characterized a novel, unique aminotransferase that acts exclusively on Coenzyme A (CoA) esters, and proposed a variant route for lysine fermentation. Results suggest that most of the lysine fermenting organisms use this new pathway in the digester. Its presence in organisms representative of two distinct bacterial divisions indicate that it may also be present in other organisms

    The CanOE Strategy: Integrating Genomic and Metabolic Contexts across Multiple Prokaryote Genomes to Find Candidate Genes for Orphan Enzymes

    Get PDF
    Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes), a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short). The first step locates “genomic metabolons”, i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12

    Semantic computational analysis of anticoagulation use in atrial fibrillation from real world data

    Get PDF
    Atrial fibrillation (AF) is the most common arrhythmia and significantly increases stroke risk. This risk is effectively managed by oral anticoagulation. Recent studies using national registry data indicate increased use of anticoagulation resulting from changes in guidelines and the availability of newer drugs. The aim of this study is to develop and validate an open source risk scoring pipeline for free-text electronic health record data using natural language processing. AF patients discharged from 1st January 2011 to 1st October 2017 were identified from discharge summaries (N = 10,030, 64.6% male, average age 75.3 ± 12.3 years). A natural language processing pipeline was developed to identify risk factors in clinical text and calculate risk for ischaemic stroke (CHA2DS2-VASc) and bleeding (HAS-BLED). Scores were validated vs two independent experts for 40 patients. Automatic risk scores were in strong agreement with the two independent experts for CHA2DS2-VASc (average kappa 0.78 vs experts, compared to 0.85 between experts). Agreement was lower for HAS-BLED (average kappa 0.54 vs experts, compared to 0.74 between experts). In high-risk patients (CHA2DS2-VASc ≥2) OAC use has increased significantly over the last 7 years, driven by the availability of DOACs and the transitioning of patients from AP medication alone to OAC. Factors independently associated with OAC use included components of the CHA2DS2-VASc and HAS-BLED scores as well as discharging specialty and frailty. OAC use was highest in patients discharged under cardiology (69%). Electronic health record text can be used for automatic calculation of clinical risk scores at scale. Open source tools are available today for this task but require further validation. Analysis of routinely collected EHR data can replicate findings from large-scale curated registries.info:eu-repo/semantics/publishedVersio

    Foreword

    No full text

    Clustering Technique for DSMs

    No full text

    Complexity Management in Production Systems: Approach for Supporting Problem Solving Through Holistic Structural Consideration

    No full text
    Part 5: Variety and Complexity Management in the Era of Industry 4.0International audienceBoth external and internal influences affect the way production systems are planned and operated. Long-standing trends combined with topics such as digitization and artificial intelligence are increasing the complexity of tackling problems in production systems. Along with this, there is the ever increasing risk of planning errors and the loss of long-term competitiveness. This paper presents an innovative approach that supports problem-solving processes in the planning and operation of production systems. For this purpose, qualitative structural modeling and analysis of problem situations are applied. At its core, the article focuses on a framework, which forms the basis for the modeling of problem situations, their analysis and the organizational and technical integration of the method. Furthermore, with the concept of building block based domain-relation models, a possibility is presented with which the structure of problem situations can be modeled and analyzed
    corecore