111 research outputs found

    Prediction of the accuracy of the tapered thread profile

    Get PDF
    The efficiency of drill string largely depends on the pipe-end connector’s accuracy named tapered thread tool joint. Most of those are made by using lathes. Turning tools were made with a profile identical to the thread profile, and all well-known world brands’ plants make the back rake angle of such a cutter with zero value. This is obviously due to the lack of a precise algorithm for calculating the cutter profile and ensuring the accuracy of the tapered thread profile. A virtual experiment was carried out of three-dimensional modeling of the process for shape creation. It showed that in the case of lathe machining of the thread of NC23 type, the deviation from the nominal half profile of the obtained thread is only 0.02°. This result prompted the decision to propose a new algorithm for predictive calculation of the half-angle of the cut profile based on the parameter associated with actual turning – the working height of the profile – h in contrast to previous scientific sources where this calculation was based on the parameter H – not truncated thread Height which is associated with the theoretical base of the accuracy of the thread. The result of the program application, created based on the algorithm proposed in the article, showed that the predicted accuracy of the obtained profile’s half-angle could be in a range from –0.03° to +0.10°, which is equivalent to 4–13 % of tolerance of this dimension

    Glibenclamide—10-h Treatment Window in a Clinically Relevant Model of Stroke

    Get PDF
    Glibenclamide improves outcomes in rat models of stroke, with treatment as late as 6 h after onset of ischemia shown to be beneficial. Because the molecular target of glibenclamide, the sulfonylurea receptor 1 (Sur1)-regulated NCCa-ATP channel, is upregulated de novo by a complex transcriptional mechanism, and the principal pathophysiological target, brain swelling, requires hours to develop, we hypothesized that the treatment window would exceed 6 h. We studied a clinically relevant rat model of stroke in which middle cerebral artery occlusion (75% < reduction in LDF signal ≤90%) was produced using an intra-arterial occluder. Recanalization was obtained 4.5 h later by removing the occluder. At that time, we administered recombinant tissue plasminogen activator (rtPA; 0.9 mg/kg IV over 30 min). Immunolabeling showed modest expression of Sur1 5 h after onset of ischemia, with expression increasing 7- to 11-fold (P < 0.01) by 24 h. Rats were administered either vehicle or glibenclamide (10 μg/kg IP loading dose plus 200 ng/h by constant subcutaneous infusion) beginning 4.5 or 10 h after onset of ischemia. In rats treated at 4.5 or 10 h, glibenclamide significantly reduced hemispheric swelling at 24 h from (mean ± SEM) 14.7 ± 1.5% to 8.1 ± 1.6% or 8.8 ± 1.1% (both P < 0.01), respectively, and significantly reduced 48-h mortality from 53% to 17% or 12% (both P < 0.01), and improved Garcia scores at 48 h from 3.8 ± 0.62 to 7.6 ± 0.70 or 8.4 ± 0.74 (both P < 0.01). We conclude that, in a clinically relevant model of stroke, the treatment window for glibenclamide extends to 10 h after onset of ischemia

    Elevated intracranial pressure and cerebral edema following permanent MCA occlusion in an ovine model

    Get PDF
    INTRODUCTION: Malignant middle cerebral artery (MCA) stroke has a disproportionately high mortality due to the rapid development of refractory space-occupying cerebral edema. Animal models are essential in developing successful anti-edema therapies; however to date poor clinical translation has been associated with the predominately used rodent models. As such, large animal gyrencephalic models of stroke are urgently needed. The aim of the study was to characterize the intracranial pressure (ICP) response to MCA occlusion in our recently developed ovine stroke model. MATERIALS AND METHODS: 30 adult female Merino sheep (n = 8-12/gp) were randomized to sham surgery, temporary or permanent proximal MCA occlusion. ICP and brain tissue oxygen were monitored for 24 hours under general anesthesia. MRI, infarct volume with triphenyltetrazolium chloride (TTC) staining and histology were performed. RESULTS: No increase in ICP, radiological evidence of ischemia within the MCA territory but without space-occupying edema, and TTC infarct volumes of 7.9+/-5.1% were seen with temporary MCAO. Permanent MCAO resulted in significantly elevated ICP, accompanied by 30% mortality, radiological evidence of space-occupying cerebral edema and TTC infarct volumes of 27.4+/-6.4%. CONCLUSIONS: Permanent proximal MCAO in the sheep results in space-occupying cerebral edema, raised ICP and mortality similar to human malignant MCA stroke. This animal model may prove useful for pre-clinical testing of anti-edema therapies that have shown promise in rodent studies.Adam J. Wells, Robert Vink, Stephen C. Helps, Steven J. Knox, Peter C. Blumbergs, Renée J. Turne
    corecore