140 research outputs found

    Assessing and countering reaction attacks against post-quantum public-key cryptosystems based on QC-LDPC codes

    Full text link
    Code-based public-key cryptosystems based on QC-LDPC and QC-MDPC codes are promising post-quantum candidates to replace quantum vulnerable classical alternatives. However, a new type of attacks based on Bob's reactions have recently been introduced and appear to significantly reduce the length of the life of any keypair used in these systems. In this paper we estimate the complexity of all known reaction attacks against QC-LDPC and QC-MDPC code-based variants of the McEliece cryptosystem. We also show how the structure of the secret key and, in particular, the secret code rate affect the complexity of these attacks. It follows from our results that QC-LDPC code-based systems can indeed withstand reaction attacks, on condition that some specific decoding algorithms are used and the secret code has a sufficiently high rate.Comment: 21 pages, 2 figures, to be presented at CANS 201

    Analysis of reaction and timing attacks against cryptosystems based on sparse parity-check codes

    Full text link
    In this paper we study reaction and timing attacks against cryptosystems based on sparse parity-check codes, which encompass low-density parity-check (LDPC) codes and moderate-density parity-check (MDPC) codes. We show that the feasibility of these attacks is not strictly associated to the quasi-cyclic (QC) structure of the code but is related to the intrinsically probabilistic decoding of any sparse parity-check code. So, these attacks not only work against QC codes, but can be generalized to broader classes of codes. We provide a novel algorithm that, in the case of a QC code, allows recovering a larger amount of information than that retrievable through existing attacks and we use this algorithm to characterize new side-channel information leakages. We devise a theoretical model for the decoder that describes and justifies our results. Numerical simulations are provided that confirm the effectiveness of our approach

    The importance of spawning behavior in understanding the vulnerability of exploited marine fishes in the U.S. Gulf of Mexico

    Get PDF
    The vulnerability of a fish stock to becoming overfished is dependent upon biological traits that influence productivity and external factors that determine susceptibility or exposure to fishing effort. While a suite of life history traits are traditionally incorporated into management efforts due to their direct association with vulnerability to overfishing, spawning behavioral traits are seldom considered. We synthesized the existing biological and fisheries information of 28 fish stocks in the U.S. Gulf of Mexico to investigate relationships between life history traits, spawning behavioral traits, management regulations, and vulnerability to fishing during the spawning season. Our results showed that spawning behavioral traits were not correlated with life history traits but improved identification of species that have been historically overfished. Species varied widely in their intrinsic vulnerability to fishing during spawning in association with a broad range of behavioral strategies. Extrinsic vulnerability was high for nearly all species due to exposure to fishing during the spawning season and few management measures in place to protect spawning fish. Similarly, several species with the highest vulnerability scores were historically overfished in association with spawning aggregations. The most vulnerable species included several stocks that have not been assessed and should be prioritized for further research and monitoring. Collectively, the results of this study illustrate that spawning behavior is a distinct aspect of fish ecology that is important to consider for predictions of vulnerability and resilience to fisheries exploitation

    Software Defined Networking Opportunities for Intelligent Security Enhancement of Industrial Control Systems

    Get PDF
    In the last years, cyber security of Industrial Control Systems (ICSs) has become an important issue due to the discovery of sophisticated malware that by attacking Critical Infrastructures, could cause catastrophic safety results. Researches have been developing countermeasures to enhance cyber security for pre-Internet era systems, which are extremely vulnerable to threats. This paper presents the potential opportunities that Software Defined Networking (SDN) provides for the security enhancement of Industrial Control Networks. SDN permits a high level of configuration of a network by the separation of control and data planes. In this work, we describe the affinities between SDN and ICSs and we discuss about implementation strategies

    MOA-2011-BLG-293Lb: A test of pure survey microlensing planet detections

    Get PDF
    Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including planetary signals too small to be distinguished from the noise. At present, we do not understand where the threshold is for detecting planets. MOA-2011-BLG-293Lb is the first planet to be published from the new surveys, and it also has substantial followup observations. This planet is robustly detected in survey+followup data (Delta chi^2 ~ 5400). The planet/host mass ratio is q=5.3+/- 0.2*10^{-3}. The best fit projected separation is s=0.548+/- 0.005 Einstein radii. However, due to the s-->s^{-1} degeneracy, projected separations of s^{-1} are only marginally disfavored at Delta chi^2=3. A Bayesian estimate of the host mass gives M_L = 0.43^{+0.27}_{-0.17} M_Sun, with a sharp upper limit of M_L < 1.2 M_Sun from upper limits on the lens flux. Hence, the planet mass is m_p=2.4^{+1.5}_{-0.9} M_Jup, and the physical projected separation is either r_perp = ~1.0 AU or r_perp = ~3.4 AU. We show that survey data alone predict this solution and are able to characterize the planet, but the Delta chi^2 is much smaller (Delta chi^2~500) than with the followup data. The Delta chi^2 for the survey data alone is smaller than for any other securely detected planet. This event suggests a means to probe the detection threshold, by analyzing a large sample of events like MOA-2011-BLG-293, which have both followup data and high cadence survey data, to provide a guide for the interpretation of pure survey microlensing data.Comment: 29 pages, 6 figures, Replaced 7/3/12 with the version accepted to Ap

    Characterizing Low-Mass Binaries From Observation of Long Time-scale Caustic-crossing Gravitational Microlensing Events

    Get PDF
    Despite astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of 2 binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 MM_{\odot} and 0.39 MM_{\odot} for MOA-2011-BLG-090 and 0.57 MM_{\odot} and 0.17 MM_{\odot} for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future.Comment: 8 pages, 5 figures, 4 table

    Efficient implementation of a CCA2-secure variant of McEliece using generalized Srivastava codes

    No full text
    International audienceIn this paper we present efficient implementations of McEliece variants using quasi-dyadic codes. We provide secure parameters for a classical McEliece encryption scheme based on quasi-dyadic generalized Srivastava codes, and successively convert our scheme to a CCA2-secure protocol in the random oracle model applying the Fujisaki-Okamoto transform. In contrast with all other CCA2-secure code-based cryptosystems that work in the random oracle model, our conversion does not require a constant weight encoding function. We present results for both 128-bit and 80-bit security level, and for the latter we also feature an implementation for an embedded device

    Characterizing low-mass binaries from observation of long-timescale caustic-crossing gravitational microlensing events

    Get PDF
    Despite the astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of two binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 M and 0.39 M for MOA-2011-BLG-090 and 0.57 M and 0.17 M for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future. © © 2012. The American Astronomical Society. All rights reserved.

    A new type of ambiguity in the planet and binary interpretations of central perturbations of high-magnification gravitational microlensing events

    Get PDF
    High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion. It is known that central perturbations induced by both types of companions can be generally distinguished due to the essentially different magnification pattern around caustics. In this paper, we present a case of central perturbations for which it is difficult to distinguish the planetary and binary interpretations. The peak of a lensing light curve affected by this perturbation appears to be blunt and flat. For a planetary case, this perturbation occurs when the source trajectory passes the negative perturbation region behind the back end of an arrowhead-shaped central caustic. For a binary case, a similar perturbation occurs for a source trajectory passing through the negative perturbation region between two cusps of an astroid-shaped caustic. We demonstrate the degeneracy for two high-magnification events of OGLE-2011-BLG-0526 and OGLE-2011-BLG-0950/MOA-2011- BLG-336. For OGLE-2011-BLG-0526, the χ2 difference between the planetary and binary model is 3, implying that the degeneracy is very severe. For OGLE-2011-BLG-0950/MOA-2011-BLG-336, the stellar binary model is formally excluded with Δχ2 105 and the planetary model is preferred. However, it is difficult to claim a planet discovery because systematic residuals of data from the planetary model are larger than the difference between the planetary and binary models. Considering that two events observed during a single season suffer from such a degeneracy, it is expected that central perturbations experiencing this type of degeneracy is common. © © 2012. The American Astronomical Society. All rights reserved.
    corecore