12 research outputs found

    Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project

    Get PDF
    Abstract. Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band) has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band) and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative \\mbox{integrated} decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5 (MM5) and the Army Corps of Engineers Hydrologic Engineering Center hydrologic and hydraulic modelling chain. The characteristics of this tool make it ideal to support flood monitoring and forecasting within urban environment and small-scale basins. Preliminary results, carried out during a field campaign in Moldova, showed that the mini-radar based hydro-meteorological forecasting system can constitute a suitable solution for local flood warning and civil flood protection applications

    Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil

    Get PDF
    Background and aimsRoot elongation is generally limited by a combination of mechanical impedance and water stress in most arable soils. However, dynamic changes of soil penetration resistance with soil water content are rarely included in models for predicting root growth. Better modelling frameworks are needed to understand root growth interactions between plant genotype, soil management, and climate. Aim of paper is to describe a new model of root elongation in relation to soil physical characteristics like penetration resistance, matric potential, and hypoxia.MethodsA new diagrammatic framework is proposed to illustrate the interaction between root elongation, soil management, and climatic conditions. The new model was written in Matlab®, using the root architecture model RootBox and a model that solves the 1D Richards equations for water flux in soil. Inputs: root architectural parameters for Soybean; soil hydraulic properties; root water uptake function in relation to matric flux potential; root elongation rate as a function of soil physical characteristics. Simulation scenarios: (a) compact soil layer at 16 to 20 cm; (b) test against a field experiment in Brazil during contrasting drought and normal rainfall seasons.Results(a) Soil compaction substantially slowed root growth into and below the compact layer. (b) Simulated root length density was very similar to field measurements, which was influenced greatly by drought. The main factor slowing root elongation in the simulations was evaluated using a stress reduction function.ConclusionThe proposed framework offers a way to explore the interaction between soil physical properties, weather and root growth. It may be applied to most root elongation models, and offers the potential to evaluate likely factors limiting root growth in different soils and tillage regimes

    An integrated approach of ground and aerial observations in flash flood disaster investigations. The case of the 2017 Mandra flash flood in Greece

    No full text
    On November 15, 2017, a high intensity convective storm, reaching 300 mm in 13 h in the core zone of the event, hit the western part of the region of Attica in Greece, causing a catastrophic flash flood in the town of Mandra and a tragic loss of 24 people, making it the most deadly flood in the country, in a period of 40 years. The research team surveyed the area during and after the flood using a combination of systematic ground and aerial observations with the aid of an unmanned aerial vehicle (UAV), aiming to reconstruct the basic physical and hydrological characteristics of the flood and its impacts. The analysis produced detailed flood extent and depth maps that provided a comprehensive description of the physical characteristics of floodwaters across the inundated area. Peak discharge was estimated, using a UAV-derived digital surface model, at two locations, corresponding to the two main tributaries and indicated an impressive hydrological response, between 9 and 10 m3/s/km2. Impact analysis on the basis of these observations showed an extensive diversity, including effects in geomorphology, vegetation, buildings, infrastructure and human population. Analysis of meteorological, botanical and geomorphological evidence lead to the conclusion that this flash flood was a very rare event. Results demonstrate that the combination of aerial and ground observations allow an enhanced and holistic reconstruction of a flash flood and its impacts with high accuracy, leading to the conclusion that the approach used has a significant potential in many aspects of flood disaster investigations. © 2018 Elsevier Lt

    Chemical composition and hygroscopic properties of aerosol particles over the Aegean Sea

    No full text
    The chemical composition and water uptake characteristics of sub-micrometre atmospheric particles over the region of the Aegean Sea were measured between 25 August and 11 September 2011 within the framework of the Aegean-Game campaign. High temporal-resolution measurements of the chemical composition of the particles were conducted using an airborne compact time-of-flight aerosol mass spectrometer (cToF-AMS). These measurements were performed during two flights from the island of Crete to the island of Lemnos and back. A hygroscopic tandem differential mobility analyser (HTDMA) located on the island of Lemnos was used to measure the ability of the particles to take up water. The HTDMA measurements showed that the particles in the dominant mode were internally mixed, having hygroscopic growth factors that ranged from 1.00 to 1.59 when exposed to 85% relative humidity. When the aircraft flew near the ground station on Lemnos, the cToF-AMS measurements showed that the organic volume fraction of the particles ranged from 43 to 56%. These measurements corroborate the range of hygroscopic growth factors measured by the HTDMA during that time. Good closure between HTDMA and cToF-AMS measurements was achieved when assuming that the organic species were less hygroscopic and had an average density that corresponds to aged organic species. Using the results from the closure study, the cToF-AMS measurements were employed to determine vertical profiles of a representative aerosol hygroscopic parameter ?mix. Calculated ?mix values ranged from 0.19 to 0.84 during the first flight and from 0.22 to 0.80 during the second flight. Air masses of different origin as determined by back trajectory calculations can explain the spatial variation in chemical composition and ?mix values of the particles observed in the region.ChemE/Chemical EngineeringApplied Science

    From hygroscopic aerosols to cloud droplets: The HygrA-CD campaign in the Athens basin -- An overview

    No full text
    The international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD), organized in the Greater Athens Area (GAA), Greece from 15 May to 22 June 2014, aimed to study the physico-chemical properties of aerosols and their impact on the formation of clouds in the convective Planetary Boundary Layer (PBL). We found that under continental (W-NW-N) and Etesian (NE) synoptic wind flow and with a deep moist PBL (~ 2-2.5 km height), mixed hygroscopic (anthropogenic, biomass burning and marine) particles arrive over the GAA, and contribute to the formation of convective non-precipitating PBL clouds (of ~ 16-20 μm mean diameter) with vertical extent up to 500 m. Under these conditions, high updraft velocities (1-2 m s− 1) and cloud condensation nuclei (CCN) concentrations (~ 2000 cm− 3 at 1% supersaturation), generated clouds with an estimated cloud droplet number of ~ 600 cm− 3. Under Saharan wind flow conditions (S-SW) a shallow PBL (< 1-1.2 km height) develops, leading to much higher CCN concentrations (~ 3500-5000 cm− 3 at 1% supersaturation) near the ground; updraft velocities, however, were significantly lower, with an estimated maximum cloud droplet number of ~ 200 cm− 3 and without observed significant PBL cloud formation. The largest contribution to cloud droplet number variance is attributed to the updraft velocity variability, followed by variances in aerosol number concentration. © 2016 Elsevier B.V

    From hygroscopic aerosols to cloud droplets: The HygrA-CD campaign in the Athens basin — An overview

    No full text
    The international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD), organized in the Greater Athens Area (GAA), Greece from 15 May to 22 June 2014, aimed to study the physico-chemical properties of aerosols and their impact on the formation of clouds in the convective Planetary Boundary Layer (PBL). We found that under continental (W-NW-N) and Etesian (NE) synoptic wind flow and with a deep moist PBL (~ 2–2.5 km height), mixed hygroscopic (anthropogenic, biomass burning and marine) particles arrive over the GAA, and contribute to the formation of convective non-precipitating PBL clouds (of ~ 16–20 μm mean diameter) with vertical extent up to 500 m. Under these conditions, high updraft velocities (1–2 m s− 1) and cloud condensation nuclei (CCN) concentrations (~ 2000 cm− 3 at 1% supersaturation), generated clouds with an estimated cloud droplet number of ~ 600 cm− 3. Under Saharan wind flow conditions (S-SW) a shallow PBL (< 1–1.2 km height) develops, leading to much higher CCN concentrations (~ 3500–5000 cm− 3 at 1% supersaturation) near the ground; updraft velocities, however, were significantly lower, with an estimated maximum cloud droplet number of ~ 200 cm− 3 and without observed significant PBL cloud formation. The largest contribution to cloud droplet number variance is attributed to the updraft velocity variability, followed by variances in aerosol number concentration. © 2016 Elsevier B.V

    CASPER coupled air-sea processes and electromagnetic ducting research

    No full text
    The Coupled Air\u2013Sea Processes and Electromagnetic Ducting Research (CASPER) project aims to better quantify atmospheric effects on the propagation of radar and communication signals in the marine environment. Such effects are associated with vertical gradients of temperature and water vapor in the marine atmospheric surface layer (MASL) and in the capping inversion of the marine atmospheric boundary layer (MABL), as well as the horizontal variations of these vertical gradients. CASPER field measurements emphasized simultaneous characterization of electromagnetic (EM) wave propagation, the propagation environment, and the physical processes that gave rise to the measured refractivity conditions. CASPER modeling efforts utilized state-of-the-art large-eddy simulations (LESs) with a dynamically coupled MASL and phase-resolved ocean surface waves. CASPER-East was the first of two planned field campaigns, conducted in October and November 2015 offshore of Duck, North Carolina. This article highlights the scientific motivations and objectives of CASPER and provides an overview of the CASPER-East field campaign. The CASPER-East sampling strategy enabled us to obtain EM wave propagation loss as well as concurrent environmental refractive conditions along the propagation path. This article highlights the initial results from this sampling strategy showing the range-dependent propagation loss, the atmospheric and upper-oceanic variability along the propagation range, and the MASL thermodynamic profiles measured during CASPER-East

    CASPER: Coupled Air-Sea Processes and Electromagnetic Ducting Research

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1175/BAMS-D-16-0046.1The objective of CASPER is to improve our capability to characterize the propagation of radio frequency (RF) signals through the marine atmosphere with coordinated efforts in data collection, data analyses, and modeling of the air–sea interaction processes, refractive environment, and RF propagation.Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) programOffice of Naval Research Multidisciplinary University Research InitiativeUS Naval Research Laboratory (ONR)grant N0001416WX00469program element 61153N (WU BE023-01-41-5461C04)Office of Naval Research Multidisciplinary University Research Initiative grant N0001416WX00469US Naval Research Laboratory program element 61153N (WU BE023-01-41-1C04
    corecore