15 research outputs found

    Transmission of primary resistance mutation K103N in a cluster of Belgian young patients from different risk groups

    Get PDF
    Background: We analysed the distribution of an HIV-1 subtype B strain resistant to efavirenz and nevirapine among incident infections in the Belgian population. Method: The Belgian AIDS reference laboratories searched their databases for HIV-1 subtype B sequences harbouring the K103N mutation in the reverse transcriptase (RT) or the C67S and V77I mutations in the protease (PR). We included the earliest RT sequence available of drug-naïve patients as well as sequences related to treatment failure. Fifty sequences were aligned omitting the codon 103 and submitted to phylogenetic analysis. Epidemiological data were collected through the Institute of Public Health national database. In addition, three sequences from the cluster were analysed by deep sequencing using the Roche GS Junior platform. Results: Phylogenetic analysis revealed the presence of a 24 virus sequences cluster. All except one of those sequences resulted from patients who were ARV-naïve at the time of sampling, and 21 had the K103N mutation. Two thirds of the clustered patients were infected through homosexual or bisexual contacts while the others were heterosexuals. No case was related to migrants contaminated abroad. Fifteen of the clustered patients were diagnosed between January 2011 and June 2012; 87% of them were aged between 20 and 29 at the time of diagnosis. Interestingly, 60% of them reside in the province of Namur. Deep sequencing analysis of 3 individuals sampled near seroconversion revealed no other resistance mutations at a frequency > 1% than those already picked up by Sanger sequencing (RT A98S, K103N; PR V77I), except the RT V90I. Conclusion: We identified a transmission cluster of drug resistant HIV-1 variants mainly including homo- and heterosexual young adults. Most individuals are of Belgian origin and are living around the city of Namur (Belgium). The K103N mutation had no apparent impact on transmission fitness as its spread raised during the last years. These observations may impact on local prevention and ARV prophylaxis strategies

    Encephalomyocarditis virus may use different pathways to initiateinfection of primary human cardiomyocytes

    Get PDF
    Encephalomyocarditis virus (EMCV) caninfect a wide range of vertebrate species including swineand non-human primates, but few data are available forhumans. We therefore wanted to gain further insight intothe mechanisms involved in EMCV infection of humancells. For this purpose, we analyzed the permissiveness ofprimary human cardiomyocytes towards two strains ofEMCV; a pig myocardial strain (B279/95) and a rat strain(1086C). In this study, we show that both strains productivelyinfect primary human cardiomyocytes and inducecomplete cytolysis. Binding and infection inhibitionexperiments indicated that attachment and infection areindependent of sialic acid and heparan sulfate for B279/95and dependent for 1086C. Sequence comparison betweenthe two strains and three-dimensional analysis of the capsidrevealed that six of the seven variable residues are surfaceexposed,suggesting a role for these amino acids in binding.Moreover, analysis of variants isolated from the 1086Cstrain revealed the importance of lysine 231 of VP1 in theattachment of EMCV to cell-surface sialic acid residues.Together, these results show a potential for EMCV strainsto use at least two different binding possibilities to initiateinfection and provide new insights into the mechanismsinvolved in primary human cell recognition by EMCV

    Theiler's Murine Encephalomyelitis Virus as a Vaccine Candidate for Immunotherapy

    Get PDF
    The induction of sterilizing T-cell responses to tumors is a major goal in the development of T-cell vaccines for treating cancer. Although specific components of anti-viral CD8+ immunity are well characterized, we still lack the ability to mimic viral CD8+ T-cell responses in therapeutic settings for treating cancers. Infection with the picornavirus Theiler's murine encephalomyelitis virus (TMEV) induces a strong sterilizing CD8+ T-cell response. In the absence of sterilizing immunity, the virus causes a persistent infection. We capitalized on the ability of TMEV to induce strong cellular immunity even under conditions of immune deficiency by modifying the virus to evaluate its potential as a T-cell vaccine. The introduction of defined CD8+ T-cell epitopes into the leader sequence of the TMEV genome generates an attenuated vaccine strain that can efficiently drive CD8+ T-cell responses to the targeted antigen. This virus activates T-cells in a manner that is capable of inducing targeted tissue damage and glucose dysregulation in an adoptive T-cell transfer model of diabetes mellitus. As a therapeutic vaccine for the treatment of established melanoma, epitope-modified TMEV can induce strong cytotoxic T-cell responses and promote infiltration of the T-cells into established tumors, ultimately leading to a delay in tumor growth and improved survival of vaccinated animals. We propose that epitope-modified TMEV is an excellent candidate for further development as a human T-cell vaccine for use in immunotherapy

    Saffold Virus, a Human Theiler's-Like Cardiovirus, Is Ubiquitous and Causes Infection Early in Life

    Get PDF
    The family Picornaviridae contains well-known human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and parechovirus). In addition, this family contains a number of viruses that infect animals, including members of the genus Cardiovirus such as Encephalomyocarditis virus (EMCV) and Theiler's murine encephalomyelits virus (TMEV). The latter are important murine pathogens that cause myocarditis, type 1 diabetes and chronic inflammation in the brains, mimicking multiple sclerosis. Recently, a new picornavirus was isolated from humans, named Saffold virus (SAFV). The virus is genetically related to Theiler's virus and classified as a new species in the genus Cardiovirus, which until the discovery of SAFV did not contain human viruses. By analogy with the rodent cardioviruses, SAFV may be a relevant new human pathogen. Thus far, SAFVs have sporadically been detected by molecular techniques in respiratory and fecal specimens, but the epidemiology and clinical significance remained unclear. Here we describe the first cultivated SAFV type 3 (SAFV-3) isolate, its growth characteristics, full-length sequence, and epidemiology. Unlike the previously isolated SAFV-1 and -2 viruses, SAFV-3 showed efficient growth in several cell lines with a clear cytopathic effect. The latter allowed us to conduct a large-scale serological survey by a virus-neutralization assay. This survey showed that infection by SAFV-3 occurs early in life (>75% positive at 24 months) and that the seroprevalence reaches >90% in older children and adults. Neutralizing antibodies were found in serum samples collected in several countries in Europe, Africa, and Asia. In conclusion, this study describes the first cultivated SAFV-3 isolate, its full-length sequence, and epidemiology. SAFV-3 is a highly common and widespread human virus causing infection in early childhood. This finding has important implications for understanding the impact of these ubiquitous viruses and their possible role in acute and/or chronic disease

    INHIBITION OF mRNA export and dimerization of interferon regulatory factor 3 by Theiler's virus leader protein

    Full text link
    Theiler's murine encephalomyelitis virus (TMEV or Theiler's virus) is a neurotropic picornavirus that can persist lifelong in the central nervous system of infected mice, causing a chronic inflammatory demyelinating disease. The leader (L) protein of the virus is an important determinant of viral persistence and has been shown to inhibit transcription of type I interferon (IFN) genes and to cause nucleocytoplasmic redistribution of host proteins. In this study, it was shown that expression of the L protein shuts off synthesis of the reporter proteins green fluorescent protein and firefly luciferase, suggesting that it induces a global shut-off of host protein expression. The L protein did not inhibit transcription or translation of the reporter genes, but blocked cellular mRNA export from the nucleus. This activity correlated with the phosphorylation of nucleoporin 98 (Nup98), an essential component of the nuclear pore complex. In contrast, the data confirmed that the L protein inhibited IFN expression at the transcriptional level, and showed that transcription of other chemokine or cytokine genes was affected by the L protein. This transcriptional inhibition correlated with inhibition of interferon regulatory factor 3 (IRF-3) dimerization. Whether inhibition of IRF-3 dimerization and dysfunction of the nuclear pore complex are related phenomena remains an open question. In vivo, IFN antagonism appears to be an important role of the L protein early in infection, as a virus bearing a mutation in the zinc finger of the L protein replicated as efficiently as the wild-type virus in type I IFN receptor-deficient mice, but had impaired fitness in IFN-competent mice

    Enhanced expression of β3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase

    No full text
    BACKGROUND - : β1-2-adrenergic receptors (AR) are key regulators of cardiac contractility and remodeling in response to catecholamines. β3-AR expression is enhanced in diseased human myocardium, but its impact on remodeling is unknown. METHODS AND RESULTS - : Mice with cardiac myocyte-specific expression of human β3-AR (β3-TG) and wild-type (WT) littermates were used to compare myocardial remodeling in response to isoproterenol (Iso) or Angiotensin II (Ang II). β3-TG and WT had similar morphometric and hemodynamic parameters at baseline. β3-AR colocalized with caveolin-3, endothelial nitric oxide synthase (NOS) and neuronal NOS in adult transgenic myocytes, which constitutively produced more cyclic GMP, detected with a new transgenic FRET sensor. Iso and Ang II produced hypertrophy and fibrosis in WT mice, but not in β3-TG mice, which also had less re-expression of fetal genes and transforming growth factor β1. Protection from Iso-induced hypertrophy was reversed by nonspecific NOS inhibition at low dose Iso, and by preferential neuronal NOS inhibition at high-dose Iso. Adenoviral overexpression of β3-AR in isolated cardiac myocytes also increased NO production and attenuated hypertrophy to Iso and phenylephrine. Hypertrophy was restored on NOS or protein kinase G inhibition. Mechanistically, β3-AR overexpression inhibited phenylephrine-induced nuclear factor of activated T-cell activation. CONCLUSIONS - : Cardiac-specific overexpression of β3-AR does not affect cardiac morphology at baseline but inhibits the hypertrophic response to neurohormonal stimulation in vivo and in vitro, through a NOS-mediated mechanism. Activation of the cardiac β3-AR pathway may provide future therapeutic avenues for the modulation of hypertrophic remodeling. © 2013 American Heart Association, Inc

    The Leader Protein of Theiler's Virus Inhibits Immediate-Early Alpha/Beta Interferon Production

    No full text
    Theiler's virus is a picornavirus responsible for a persistent infection of the central nervous system of the mouse, leading to a chronic demyelinating disease considered to be a model for multiple sclerosis. The leader (L) protein encoded by Theiler's virus is a 76-amino-acid-long peptide containing a zinc-binding motif. This motif is conserved in the L proteins of all cardioviruses, including encephalomyocarditis virus. The L protein of Theiler's virus was suggested to interfere with the alpha/beta interferon (IFN-α/β) response (W.-P. Kong, G. D. Ghadge, and R. P. Roos, Proc. Natl. Acad. Sci. USA 91:1796–1800, 1994). We show that expression of the L protein indeed inhibits the production of alpha/beta interferon by infected L929 cells. The L protein specifically inhibits the transcription of the IFN-α4 and IFN-β genes, which are known to be activated early in response to viral infection. Mutation of the zinc finger was sufficient to block the anti-interferon activity, outlining the importance of this motif in the L protein function. In agreement with the anti-interferon role of the L protein, a virus bearing a mutation in the zinc-binding motif was dramatically impaired in its ability to persist in the central nervous system of SJL/J mice
    corecore