89 research outputs found

    Optimization of broadband semiconductor chirped mirrors with genetic algorithm

    Get PDF
    Genetic algorithm was applied for optimization of dispersion properties in semiconductor Bragg reflectors for applications in femtosecond lasers. Broadband, large negative group-delay dispersion was achieved in the optimized design: The group-delay dispersion (GDD) as large as −3500 fs2 was theoretically obtained over a 10-nm bandwidth. The designed structure was manufactured and tested, providing GDD −3320 fs2 over a 7-nm bandwidth. The mirror performance was verified in semiconductor structures grown with molecular beam epitaxy. The mirror was tested in a passively mode-locked Yb:KYW laser

    Study of interfaces chemistry in type-II GaSb/InAs superlattice structures

    Get PDF
    There is a considerable interest in type-II GaSb/InAs superlattice system due to several modern applications including infrared detectors. In these studies X-ray Photoelectron Spectroscopy (XPS) and Spectroscopic Ellipsometry (SE) have been used to extensive characterization of the surface and interface of GaSb/InAs superlattice. Application of XPS and SE techniques provide precise information from topmost layers of structure and allow excluding presence of GaAs-type interfaces in GaSb/InAs superlattices. Simultaneously, these results indicate that InSb-type or GaInSb-type interfaces have been detected in the structures studied

    Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells

    Full text link
    The experimental results obtained for the magneto-transport in the InGaAs/InAlAs double quantum wells (DQW) structures of two different shapes of wells are reported. The beating-effect occurred in the Shubnikov-de Haas (SdH) oscillations was observed for both types of the structures at low temperatures in the parallel transport when magnetic field was perpendicular to the layers. An approach to the calculation of the Landau levels energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating-effect. We also argue that in order to account for the observed magneto-transport phenomena (SdH and Integer Quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron sub-systems regarding symmetry properties of their states, symmetric and anti-symmetric ones which are not mixed by electron-electron interaction.Comment: 20 pages, 20 figure

    Parallel magnetotransport in multiple quantum well structures

    No full text
    The results of investigations of parallel magnetotransport in AlGaAs/GaAs and InGaAs/InAlAs/InP multiple quantum wells structures (MQW’s) are presented in this paper. The MQW’s were obtained by metalorganic vapour phase epitaxy with different shapes of QW, numbers of QW and levels of doping. The magnetotransport measurements were performed in wide region of temperatures (0.5–300 K) and at high magnetic fields up to 30 T (B is perpendicular and current is parallel to the plane of the QW). Three types of observed effects are analyzed: quantum Hall effect and Shubnikov—de Haas oscillations at low temperatures (0.5–6 K) as well as magnetophonon resonance at higher temperatures (77–300 K)

    Arabinogalactan-protein and pectin epitopes in relation to an extracellular matrix surface network and somatic embryogenesis and callogenesis in Trifolium nigrescens Viv

    Get PDF
    The formation of an extracellular matrix surface network (ECMSN), and associated changes in the distribution of arabinogalactan-protein and pectin epitopes, have been studied during somatic embryogenesis (SE) and callogenesis of Trifolium nigrescens Viv. Scanning electron microscopy observations revealed the occurrence of an ECMSN on the surface of cotyledonary-staged somatic embryos as well as on the peripheral, non-regenerating callus cells. The occurrence of six AGP (JIM4, JIM8, JIM13, JIM16, LM2, MAC207) and four pectin (JIM5, JIM7, LM5, LM6) epitopes was analysed during early stages of SE, in cotyledonary-staged somatic embryos and in non-embryogenic callus using monoclonal antibodies. The JIM5 low methyl-esterified homogalacturonan (HG) epitope localized to ECMSN on the callus surface but none of the epitopes studied were found to localize to ECMSN over mature somatic embryos. The LM2 AGP epitope was detected during the development of somatic embryos and was also observed in the cell walls of meristematic cells from which SE was initiated. The pectic epitopes JIM5, JIM7, LM5 and LM6 were temporally regulated during SE. The LM6 arabinan epitope, carried by side chains of rhamnogalacturonan-I (RG-I), was detected predominantly in cells of embryogenic swellings, whilst the LM5 galactan epitope of RG-I was uniformly distributed throughout the ground tissue of cotyledonary-staged embryoids but not detected at the early stages of SE. Differences in the distribution patterns of low and high methyl-esterified HG were detected: low ester HG (JIM5 epitope) was most abundant during the early steps of embryo formation and highly methyl-esterified form of HG (JIM7 epitope) became prevalent during embryoid maturation

    Integrated high-content quantification of intracellular ROS levels and mitochondrial morphofunction

    Get PDF
    Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS) and their removal by cellular antioxidant systems. Especially under pathological conditions, mitochondria constitute a relevant source of cellular ROS. These organelles harbor the electron transport chain, bringing electrons in close vicinity to molecular oxygen. Although a full understanding is still lacking, intracellular ROS generation and mitochondrial function are also linked to changes in mitochondrial morphology. To study the intricate relationships between the different factors that govern cellular redox balance in living cells, we have developed a high-contentmicroscopy-based strategy for simultaneous quantification of intracellular ROS levels and mitochondrial morphofunction. Here, we summarize the principles of intracellular ROS generation and removal, and we explain the major considerations for performing quantitative microscopy analyses of ROS and mitochondrial morphofunction in living cells. Next, we describe our workflow, and finally, we illustrate that a multiparametric readout enables the unambiguous classification of chemically perturbed cells as well as laminopathy patient cells
    corecore