716 research outputs found

    First mission - towards a global harmonised in-situ data repository for forest biomass datasets validation

    Get PDF
    Global measurements of forest height, biomass are urgently needed as essential climate and ecosystem variables, but can benefit from greater co-operation between remote sensing (RS) and forest ecological communities. The Forest Observation System - FOS (https://forest-observation-system.net/ [https://forest-observation- system.net/]) is an international cooperation to establish a global in-situ forest biomass database to support earth observation and to encourage investment in relevant field-based observations and science. FOS aims to link the RS community with ecologists who measure forest biomass and estimating biodiversity in the field. The FOS aims to overcome data sharing issues and introduce a standard biomass data flow from tree-level measurement to the plot-level aggregation served in the most suitable form for the RS. Ecologists benefit from the FOS with improved access to global biomass information, data standards, gap identification and potentially improved funding opportunities to address the known gaps and deficiencies in the data. FOS closely collaborate with the CTFS-ForestGEO, the ForestPlots.net (incl. RAfNFOR, AfriTRON and T-FORCES), AusCover, TmFO and the llASA network. FOS is an open initiative with other networks and teams most welcome to join. The online database provides open access for forest plot location, canopy height and above-ground biomass. Plot size is 0.25ha or larger. Comparison of plot biomass data with available global and regional maps (incl. Kindermann et al., 2013; Thurner et al., 2013; Saatchi et al., 2011; Baccini et al., 2012; Avitabile et al., 2016; Hu et al., 2016; Santoro et al., 2018) shows wide range of uncertainties associated with biomass estimation

    Finite time and asymptotic behaviour of the maximal excursion of a random walk

    Full text link
    We evaluate the limit distribution of the maximal excursion of a random walk in any dimension for homogeneous environments and for self-similar supports under the assumption of spherical symmetry. This distribution is obtained in closed form and is an approximation of the exact distribution comparable to that obtained by real space renormalization methods. Then we focus on the early time behaviour of this quantity. The instantaneous diffusion exponent νn\nu_n exhibits a systematic overshooting of the long time exponent. Exact results are obtained in one dimension up to third order in n1/2n^{-1/2}. In two dimensions, on a regular lattice and on the Sierpi\'nski gasket we find numerically that the analytic scaling νnν+Anν\nu_n \simeq \nu+A n^{-\nu} holds.Comment: 9 pages, 4 figures, accepted J. Phys.

    Hyperlactatemia and Antiretroviral Therapy: The Swiss HIV Cohort Study

    Get PDF
    The prevalence, clinical presentation, and risk factors for hyperlactatemia among patients receiving antiretroviral therapy was determined during a 1-month period for patients in the Swiss HIV Cohort Study. Overall, 73 (8.3%) of 880 patients presented an increase in serum lactate of >1.1 times the upper normal limit (UNL). For 9 patients (1%), lactate elevation was moderate or severe (>2.2 times the UNL). Patients who presented with hyperlactatemia were more likely to be receiving stavudine with or without didanosine (odds ratio, 2.7; 95% confidence interval, 1.5-4.8), as compared with patients who received zidovudine-based regimens. The risk increased with increasing time receiving stavudine with or without didanosine. The association between hyperlactatemia and stavudine with or without didanosine was not biased by these medications being more recently available and, therefore, being given preferentially to patients who had prolonged use of nucleoside analog reverse-transcriptase inhibitors. Hyperlactatemia was associated with lipoatrophy, hyperlipidemia, and hyperglycemia. Age, sex, or stage of infection with human immunodeficiency virus were not predictive of hyperlactatemia. Determination of lactate levels may prove useful in the screening for mitochondrial toxicit

    Pliocene Te Aute limestones, New Zealand: Expanding concepts for cool-water shelf carbonates

    Get PDF
    Acceptance of a spectrum of warm- through cold-water shallow-marine carbonate facies has become of fundamental importance for correctly interpreting the origin and significance of all ancient platform limestones. Among other attributes, properties that have become a hallmark for characterising many Cenozoic non-tropical occurrences include: (1) the presence of common bryozoan and epifaunal bivalve skeletons; (2) a calcite-dominated mineralogy; (3) relatively thin deposits exhibiting low rates of sediment accumulation; (4) an overall destructive early diagenetic regime; and (5) that major porosity destruction and lithification occur mainly in response to chemical compaction of calcitic skeletons during moderate to deep burial. The Pliocene Te Aute limestones are non-tropical skeletal carbonates formed at paleolatitudes near 40-42°S under the influence of commonly strong tidal flows along the margins of an actively deforming and differentially uplifting forearc basin seaway, immediately inboard of the convergent Pacific-Australian plate boundary off eastern North Island, New Zealand. This dynamic depositional and tectonic setting strongly influenced both the style and subsequent diagenetic evolution of the limestones. Some of the Te Aute limestones exhibit the above kinds of "normal" non-tropical characteristics, but others do not. For example, many are barnacle and/or bivalve dominated, and several include attributes that at least superficially resemble properties of certain tropical carbonates. In this regard, a number of the limestones are infaunal bivalve rich and dominated by an aragonite over a calcite primary mineralogy, with consequently relatively high diagenetic potential. Individual limestone units are also often rather thick (e.g., up to 50-300 m), with accumulation rates from 0.2 to 0.5 m/ka, and locally as high as 1 m/ka. Moreover, there can be a remarkable array of diagenetic features in the limestones, involving grain alteration and/or cementation to widely varying extents within any, or some combination of, the marine phreatic, burial, and meteoric diagenetic environments, including locally widespread development of meteoric cement sourced from aragonite dissolution. The message is that non-tropical shelf carbonates include a more diverse array of geological settings, of skeletal and mineralogical facies, and of diagenetic features than current sedimentary models mainly advocate. While several attributes positively distinguish tropical from non-tropical limestones, continued detailed documentation of the wide spectrum of shallow-marine carbonate deposits formed outside tropical regions remains an important challenge in carbonate sedimentology

    Localization of thermal packets and metastable states in Sinai model

    Full text link
    We consider the Sinai model describing a particle diffusing in a 1D random force field. As shown by Golosov, this model exhibits a strong localization phenomenon for the thermal packet: the disorder average of the thermal distribution of the relative distance y=x-m(t), with respect to the (disorder-dependent) most probable position m(t), converges in the limit of infinite time towards a distribution P(y). In this paper, we revisit this question of the localization of the thermal packet. We first generalize the result of Golosov by computing explicitly the joint asymptotic distribution of relative position y=x(t)-m(t) and relative energy u=U(x(t))-U(m(t)) for the thermal packet. Next, we compute in the infinite-time limit the localization parameters Y_k, representing the disorder-averaged probabilities that k particles of the thermal packet are at the same place, and the correlation function C(l) representing the disorder-averaged probability that two particles of the thermal packet are at a distance l from each other. We moreover prove that our results for Y_k and C(l) exactly coincide with the thermodynamic limit of the analog quantities computed for independent particles at equilibrium in a finite sample of length L. Finally, we discuss the properties of the finite-time metastable states that are responsible for the localization phenomenon and compare with the general theory of metastable states in glassy systems, in particular as a test of the Edwards conjecture.Comment: 17 page

    Carbon Stocks and Fluxes in Tropical Lowland Dipterocarp Rainforests in Sabah, Malaysian Borneo

    Get PDF
    Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+) good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha−1±3.8 (SD), including: Total aboveground (TAGC: 55%; 91.9 Mg C ha−1±2.9 SEM) and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha−1±0.5 SEM), deadwood (8%; 13.2 Mg C ha−1±3.5 SEM) and soil organic matter (SOM: 24%; 39.6 Mg C ha−1±0.9 SEM), understory vegetation (3%; 5.1 Mg C ha−1±1.7 SEM), standing litter (<1%; 0.7 Mg C ha−1±0.1 SEM) and fine root biomass (<1%; 0.9 Mg C ha−1±0.1 SEM). Fluxes included litterfall, a proxy for leaf net primary productivity (4.9 Mg C ha−1 yr−1±0.1 SEM), and soil respiration, a measure for heterotrophic ecosystem respiration (28.6 Mg C ha−1 yr−1±1.2 SEM). The missing estimates necessary to close the C balance are wood net primary productivity and autotrophic respiration

    Height-diameter allometry of tropical forest trees

    Get PDF
    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike\u27s information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account

    Anomalous diffusion, Localization, Aging and Sub-aging effects in trap models at very low temperature

    Full text link
    We study in details the dynamics of the one dimensional symmetric trap model, via a real-space renormalization procedure which becomes exact in the limit of zero temperature. In this limit, the diffusion front in each sample consists in two delta peaks, which are completely out of equilibrium with each other. The statistics of the positions and weights of these delta peaks over the samples allows to obtain explicit results for all observables in the limit T0T \to 0. We first compute disorder averages of one-time observables, such as the diffusion front, the thermal width, the localization parameters, the two-particle correlation function, and the generating function of thermal cumulants of the position. We then study aging and sub-aging effects : our approach reproduces very simply the two different aging exponents and yields explicit forms for scaling functions of the various two-time correlations. We also extend the RSRG method to include systematic corrections to the previous zero temperature procedure via a series expansion in TT. We then consider the generalized trap model with parameter α[0,1]\alpha \in [0,1] and obtain that the large scale effective model at low temperature does not depend on α\alpha in any dimension, so that the only observables sensitive to α\alpha are those that measure the `local persistence', such as the probability to remain exactly in the same trap during a time interval. Finally, we extend our approach at a scaling level for the trap model in d=2d=2 and obtain the two relevant time scales for aging properties.Comment: 33 pages, 3 eps figure
    corecore