289 research outputs found
Recommended from our members
Differences in virus receptor for type I and type II feline infectious peritonitis virus.
Feline infectious peritonitis viruses (FIPVs) are classified into type I and type II serogroups. Here, we report that feline aminopeptidase N (APN), a cell-surface metalloprotease on the intestinal, lung and kidney epithelial cells, is a receptor for type II FIPV but not for type I FIPV. A monoclonal antibody (MAb) R-G-4, which blocks infection of Felis catus whole fetus (fcwf-4) cells by type II FIPV, was obtained by immunizing mice with fcwf-4 cells which are highly susceptible to FIPV. This MAb also blocked infection of fcwf-4 cells by type II feline enteric coronavirus (FECV), canine coronavirus (CCV), and transmissible gastroenteritis virus (TGEV). On the other hand, it did not block infection by type I FIPVs. MAb R-G-4 recognized a polypeptide of relative molecular mass 120-130 kDa in feline intestinal brush-border membrane (BBM) proteins. The polypeptide possessed aminopeptidase activity, and the first 15 N-terminal amino acid sequence was identical to that of the feline APN. Feline intestinal BBM proteins and the polypeptide reacted with MAb R-G-4 (feline APN) inhibited the infectivity of type II FIPV, type II FECV, CCV and TGEV to fcwf-4 cells, but did not inhibit the infectivity of type I FIPVs
Vector fields near a generic submanifold
It is given a classification of generic vector fields near a generic submanifold. The normal forms are linear vector fields near the local model of the submanifold. Similar results are obtained for vector fields near a hypersurface with boundary and near a piecewise-smooth hypersurface
Singularities of line congruences
A line congruence is a two parameter family of lines in IR3. In this paper we study singularities of line congruences. We show that generic singularities of general line congruences are the same as those of stable mappings between three dimensional manifolds. Moreover, we also study singularities of normal congruences and equiaffine normal congruences from the view point of the theory of Lagrangian singularities
Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21
OBJECTIVE—Fibroblast growth factor (FGF)-21 improves insulin
sensitivity and lipid metabolism in obese or diabetic animal
models, while human studies revealed increased FGF-21 levels in obesity and type 2 diabetes. Given that FGF-21 has been suggested to be a peroxisome proliferator–activator receptor (PPAR) –dependent regulator of fasting metabolism, we hypothesized that free fatty acids (FFAs), natural agonists of PPAR, might modify FGF-21 levels.
RESEARCH DESIGN AND METHODS—The effect of fatty
acids on FGF-21 was investigated in vitro in HepG2 cells. Within a randomized controlled trial, the effects of elevated FFAs were studied in 21 healthy subjects (13 women and 8 men). Within a clinical trial including 17 individuals, the effect of insulin was analyzed using an hyperinsulinemic-euglycemic clamp and the effect of PPAR activation was studied subsequently in a rosiglitazone
treatment trial over 8 weeks.
RESULTS—Oleate and linoleate increased FGF-21 expression
and secretion in a PPAR-dependent fashion, as demonstrated
by small-interfering RNA–induced PPAR knockdown, while
palmitate had no effect. In vivo, lipid infusion induced an
increase of circulating FGF-21 in humans, and a strong correlation between the change in FGF-21 levels and the change in FFAs was observed. An artificial hyperinsulinemia, which was induced to delineate the potential interaction between elevated FFAs and
hyperinsulinemia, revealed that hyperinsulinemia also increased FGF-21 levels in vivo, while rosiglitazone treatment had no effect.
CONCLUSIONS—The results presented here offer a mechanism
explaining the induction of the metabolic regulator FGF-21 in the fasting situation but also in type 2 diabetes and obesity
Quaternionic Salkowski Curves and Quaternionic Similar Curves
In this paper, we give the definitions and characterizations of quaternionic
Salkowski, quaternionic anti-Salkowski and quaternionic similar curves in the
Euclidean spaces E^3 and E^4. We obtain relationships between these curves and
some special quaternionic curves such as quaternionic slant helices and
quaternionic B2-slant helices.Comment: 17 page
Endothelial Cells Regulate Physiological Cardiomyocyte Growth via VEGFR2-Mediated Paracrine Signaling
Background: Heart failure, which is a major global health problem, is often preceded by pathological cardiac hypertrophy. The expansion of the cardiac vasculature, to maintain adequate supply of oxygen and nutrients, is a key determinant of whether the heart grows in a physiological compensated manner or a pathological decompensated manner. Bidirectional endothelial cell (EC)-cardiomyocyte (CMC) cross talk via cardiokine and angiocrine signaling plays an essential role in the regulation of cardiac growth and homeostasis. Currently, the mechanisms involved in the EC-CMC interaction are not fully understood, and very little is known about the EC-derived signals involved. Understanding how an excess of angiogenesis induces cardiac hypertrophy and how ECs regulate CMC homeostasis could provide novel therapeutic targets for heart failure. Methods: Genetic mouse models were used to delete vascular endothelial growth factor (VEGF) receptors, adeno-associated viral vectors to transduce the myocardium, and pharmacological inhibitors to block VEGF and ErbB signaling in vivo. Cell culture experiments were used for mechanistic studies, and quantitative polymerase chain reaction, microarrays, ELISA, and immunohistochemistry were used to analyze the cardiac phenotypes. Results: Both EC deletion of VEGF receptor (VEGFR)-1 and adeno-associated viral vector-mediated delivery of the VEGFR1-specific ligands VEGF-B or placental growth factor into the myocardium increased the coronary vasculature and induced CMC hypertrophy in adult mice. The resulting cardiac hypertrophy was physiological, as indicated by preserved cardiac function and exercise capacity and lack of pathological gene activation. These changes were mediated by increased VEGF signaling via endothelial VEGFR2, because the effects of VEGF-B and placental growth factor on both angiogenesis and CMC growth were fully inhibited by treatment with antibodies blocking VEGFR2 or by endothelial deletion of VEGFR2. To identify activated pathways downstream of VEGFR2, whole-genome transcriptomics and secretome analyses were performed, and the Notch and ErbB pathways were shown to be involved in transducing signals for EC-CMC cross talk in response to angiogenesis. Pharmacological or genetic blocking of ErbB signaling also inhibited part of the VEGF-B-induced effects in the heart. Conclusions: This study reveals that cross talk between the EC VEGFR2 and CMC ErbB signaling pathways coordinates CMC hypertrophy with angiogenesis, contributing to physiological cardiac growth.</div
Vibrio fluvialis in Patients with Diarrhea, Kolkata, India
We identified 131 strains of Vibrio fluvialis among 400 nonagglutinating Vibrio spp. isolated from patients with diarrhea in Kolkata, India. For 43 patients, V. fluvialis was the sole pathogen identified. Most strains harbored genes encoding hemolysin and metalloprotease; this finding may contribute to understanding of the pathogenicity of V. fluvialis
Bimodal Effect on Pancreatic β-Cells of Secretory Products From Normal or Insulin-Resistant Human Skeletal Muscle
OBJECTIVE: Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) beta-cells. RESEARCH DESIGN AND METHODS: Human skeletal muscle cells were cultured for up to 24 h with tumor necrosis factor (TNF)-alpha to induce insulin resistance, and mRNA expression for cytokines was analyzed and compared with controls (without TNF-alpha). Conditioned media were collected and candidate cytokines were measured by antibody array. Human and rat primary beta-cells were used to explore the impact of exposure to conditioned media for 24 h on apoptosis, proliferation, short-term insulin secretion, and key signaling protein phosphorylation and expression. RESULTS: Human myotubes express and release a different panel of myokines depending on their insulin sensitivity, with each panel exerting differential effects on beta-cells. Conditioned medium from control myotubes increased proliferation and glucose-stimulated insulin secretion (GSIS) from primary beta-cells, whereas conditioned medium from TNF-alpha-treated insulin-resistant myotubes (TMs) exerted detrimental effects that were either independent (increased apoptosis and decreased proliferation) or dependent on the presence of TNF-alpha in TM (blunted GSIS). Knockdown of beta-cell mitogen-activated protein 4 kinase 4 prevented these effects. Glucagon-like peptide 1 protected beta-cells against decreased proliferation and apoptosis evoked by TMs, while interleukin-1 receptor antagonist only prevented the latter. CONCLUSIONS: Taken together, these data suggest a possible new route of communication between skeletal muscle and beta-cells that is modulated by insulin resistance and could contribute to normal beta-cell functional mass in healthy subjects, as well as the decrease seen in type 2 diabetes
- …