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Singularities of line congruences

Shyuichi [ZUMIYA, Kentaro SAJI and Nobuko TAKEUCHI

May 13, 2002

Abstract

A line congruence is a two parameter family of lines in R®. In this paper we study singu-
larities of line congruences. We show that generic singularities of general line congruences
are the same as those of stable mappings between three dimensional manifolds. Moreover,
we also study singularities of normal congruences and equiaffine normal congruences from
the view point of the theory of Lagrangian singularities.

1 Introduction

The study of line congruences in R? is a classical area in line geometry. It has, however, much
current interest (i.e., Projective differential geometry [17], Computing and Visualization [15],
Geometry of Solitons [18, 19] etc.) One of the examples of line congruences is given by the
normal lines of a regular surface. In this case the focal surface (i.e., the critical value set)
of the line congruences are classically known as the evolute of the surface, also known as its
caustic (i.e., the critical value set of a Lagrangian map). A line congruence is called a normal
congruence if there exists a surface such that the line congruence is given as the normal lines
of the surface. So the notion of normal congruences play an important role in the classical
differential geometry of surfaces. The classification of singularities of the evolute of a generic

surface have been described in [14].

cuspidal edge swallowtail pyramid purse

Fig.1
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Briefly speaking, the cuspidal edge, the swallowtail, the elliptic umbilic (pyramid) and the
hyperbolic umbilic (purse) are the generic singularities of evolutes of surfaces (cf., Fig. 1).
These singularities are the same as the generic classification of general Lagrangian singularities
in 3-space [1]. The evolute of a surface is the focal surface of a normal congruence which is a
member of the special class of line congruences.

On the other hand, general line congruences arise in the classical method of transforming
one surface to another by lines. Around 1875, Bécklund and Bianchi ([2, 3]) studied such a
transformation given by a line congruence which is now called the Bdcklund transformation.
In this case the corresponding focal surfaces are pseudo spherical surfaces (i.e. surfaces of
constant negative Gaussian curvature). In [18], Shephard draws several pictures of pseudo
spherical surfaces by using another interpretation of the notion of line congruences. We can
observe that only cuspidal edges and swallowtails appear on pseudo spherical surfaces in her
pictures. There might be no pyramids and purses as focal surfaces of generic “general” line
congruences. Therefore we have the following natural question:

Question. How are focal surfaces of normal congruences different from those of “general” line
congruences’

In the first half of this paper we give a classification of singularities of general line congru-
ences. Since we only consider the local classification of singularities of the focal surface of a
line congruence, we adopt the following local analytic expression: A line congruence in R? is
(locally) the image of the map Fiye) : U x I — R® defined by Fiy ey(u, v,t) = x(u, v) +te(u, v),
where z: U — R3 e : U — R®\ {0} are smooth mappings, U C R? is an open region and [ is
an open interval. We call @ a base surface and e a director surface.

In order to describe the main result in the first half of this paper we need some preparatory
material. Let f; : (N, z;) — (P,y:) (1 = 1,2) be C® map germs. We say that f,g are
A-equivalent if there exist diffeomorphism germs ¢ : (N1, 1) — (Na, 22) and ¢ : (P, y1) —
(P2, y2) such that ¢ o fy = fy0¢.

Let C®(U,R® x (R*\ {0})) be the space of smooth mappings (z,e) : U — R3 x (R*\ {0})
equipped with Whitney C*-topology, where U C R? is an open region. The following theorem
gives a “generic” answer to the above question.

Theorem 1.1 There ezists an open dense subset O C C°(U,R* x (R*\ {0})) such that the
germ of the line congruence Fi, 0y at any point (ug,ty) € U x I is an immersive germ, or
A-equivalent to the fold, the cuspidal edge or the swallowtail for any (x,e) € O.

Here, the fold is the map germ defined by (z,vy,2) — (x,y,2?%), the cuspidal edge is the
map germ defined by (x,y,2) — (z,y,2° + x2) and the swallowtail is defined by (z,y,z) —
(z,y, 2" + xz + yz?).

It is well known that the critical value set for a generic smooth map germ between 3-
manifolds is locally diffeomorphic to the fold, the cuspidal edge or the swallowtail (cf.; [1, 5, 12]).
The set of line congruences is a very small subset in the space of all C*°-mappings between 3-
spaces. The above theorem, however, asserts that the generic singularities of line congruences
are the same as those of C*®-mappings. We can summarize our key results as follows (cf.,
1, 5, 7,12, 14]) :

{Singularities of generic normal congruences} # {Singularities of generic line congruences},

{Singularities of generic line congruences} = {Singularities of generic C*°-mappings}.
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In §2 we briefly review the classical theory of line congruences. The idea of the proof of
Theorem 1.1 is that we may locally regard a line congruence as a one-dimensional unfolding of
a map germ and apply the theory of unfoldings. In this case the parameter along the lines is
considered to be the unfolding parameter. In §3 we explain the general theory of unfoldings.
The proof of Theorem 1.1 is given in §4. The basic idea has been used by the authors in other
papers on singularities of ruled surfaces and their generalizations [10, 16].

In the latter half of the paper we consider normal congruences and equiaffine normal congru-
ences. In §5 we consider normal congruences from the view point of symplectic geometry and a
classical characterization of normal congruences is given (cf., Proposition 5.1 and [8, 18]). The
meaning of this characterization is interpreted in the framework of symplectic geometry. We
show that the line congruence is a normal congruence if and only if it has a special Lagrangian
lift to the cotangent bundle T*R® (cf., Proposition 5.5). Therefore we introduce the notion of
Lagrangian congruences, which is equivalent to the notion of normal congruences. By using
this fact we define the space of normal congruences and prove that the generic germs of normal
congruences are the same as Lagrangian stable map germs. This result clarifies the fact that
the generic singularities of evolutes are the same as the generic Lagrangian singularities. In §6
we consider another important class of line congruences. In the context of equiaffine differen-
tial geometry (cf., [4, 13]), the notion of equiaffine normal plays a principal role. Therefore we
consider the notion of equiaffine normal congruences in the same way as an ordinary normal con-
gruences. The definition of the equiaffine evolute is also given as the focal set of the equiaffine
normal congruence. The assertion of Theorem 6.3 is that an equiaffine normal congruence is a
Lagrangian congruence, so that it is a normal congruence if we consider the Euclidean scalar
product. A generic classification of equiaffine normal congruences is, however, still an open
problem. We give conjectures on the singularities for equiaffine normal congruences.

All manifolds and maps considered here are of class C'* unless otherwise stated.

2 Basic notions and a review of the classical theory

We now present basic concepts and properties of line congruences in R3. The classical theory
has been given in [8]. However, line congruences are not so popular now, so that we review the
clagsical framework.

For a line congruence Fi; ), if € has a constant direction, then all lines are parallel. There-
fore, a line congruence Fi, ) is said to be nonparallel provided (e1(u) x e(u), ez(u) x e(u)) # 0
for any u € U, where e; = de/0u; (i = 1,2) and x is the vector product. Thus the lines are
always changing directions on a nonparallel line congruence It is clear that the set consisting
of nonparallel line congruences is an open dense subset in C®(U, R? x (R*\ {0})).

In the theory of Backlund transformations, the notion of focal surfaces plays an principal
role (cf., [18]). If we consider the line congruence which is given by the normal lines of a surface,
the focal surface is the evolute of the surface. Therefore we concentrate on the study of focal
surfaces for general line congruences. For a line congruence F, ., we consider a surface

y(ut,u?) = x(ut, u?) + t(u', u?)e(u', u?).

We say that y is a focal surface of Fi, ) if (€,y; X yy) = 0 and Image F, ) = Image Fiy ),
where y, = 0y /0u’ (i = 1,2). Then we have the following lemma.

Lemma 2.1 Let Fi,)(t,u) be a line congruence. Suppose that there exists a smooth func-

tion t(u',u?) such that y(u',u?) = z(u',u?) + t(u!,u?)e(ul,u?) is a focal surface of the line
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congruence Fiz 0. Then we have
(e,e1 X ex)t’ + (e, @) X ey + ey X 1)t + (e, X T3) = 0.
Proof. We have y, = x; + t;e + te; (i = 1,2). Therefore we have
Yy XYy =T X Ty +lo(xy X €) +t1(e X xa) +t(x1 X e3+ €1 X x)
+tt1(e x ey) + tta(e; x e) +t%(e; x ey).

The assertion follows from this calculation directly. O

On the other hand, we can determine the singular set of Fi, ).

Lemma 2.2 Let Fi, ) be a line congruence. A point p = (u',u® t) is a singular point of Fy
of and only iof
(e,e1 X ex)t’ + (e, @) X ey + ey X 1)t + (e, T X x3) = 0.

Proof. We can calculate the partial derivatives of F{,.) as follows:
aF(mﬁ) 3F<e7x)
ou? ot

Therefore we have

OF . OF . OF 0
dor (P52 ) ED 0 0) TR0 ) = (e 4 t61) x (o +te)
= (e, x; x Ty + (€1 X Ty + x1 X ey)t + (e; x ey)t?)

= (e,e; X e)t* + (e,x) x €y + ey X 1)t + (€, 21 X Ty)

(uh, v t) = zi(u', u?) + te(u', u?) (i = 1,2), (u', v t) = e(ul, u?).

Since p = (u!, 1?2, t) is a singular point of Fl, ) if and only if
(z.e)

OF o OF OFes
det( @O (1) 0D (ut WP 1) (’)(ul,uz,t)>:0,

oul ou? ot
the assertion holds. 0]

By Lemmas 2.1 and 2.2, the critical value set of F{, ) is called the (generalized) focal surface
of F(m,e)-

3 Unfoldings

For the proof of Theorem 1.1, we need to review the theory of one-dimensional unfoldings of map
germs. The definition of an r-dimensional unfolding of fo : (R™,0) — (R?, 0) (originally due to
Thom) is a germ F : (R" xR",0) — (RP? xR", 0) given by F(z,u) = (f(z,u), u), where f(z,u)
is a germ of r dimensional parameterized families of germs with f(z,0) = fy(z). This definition
depends on the coordinates of both of spaces (R™ x R",0) and (R? x R", 0). For our purpose,
we need the coordinate free definition of unfoldings given in [6]. Let f : (N,zo) — (P, yo)
be a map-germ between manifolds. An wunfolding of f is a triple (F,4,7) of map germs, where
i (N,zo) — (N, z), j: (Pyyo) — (P',y,) are immersions and j is transverse to F, such
that Foi=jo fand (¢, f) : {(z,y) € N x P | F(z') = j(y)} — N is a diffeomorphism
germ. The dimension of (F,i,j) as an unfolding is dim N' — dim N. We can easily prove that
the above two definitions are equivalent.



Lemma 3.1 Let F: (R x R, (0,0)) — (R™,0) be a map germ with the components of the

form
Flx,t) = (Fi(x,t),..., F(x,t)).

Suppose that 0F,, /0t(0,0) # 0. By the implicit function theorem, there exists a function germ
g: (R 0) — (R,0) with
F7H0) = {(z, g(2)) | € (R",0)}.

Let us consider immersion germs i : (R"1,0) — (R, (0,0)) gwen by i(x) = (x, g(x)),
7 (R 0) — (R™, (0,0)) given by j(y) = (y,0) and a map germ f: (R*1,0) — (R*"!,0)
given by f(x) = (Fi(x,g9(x)),..., Fu1(x,g(x))). Then the triple (F,i,7) is a one-dimensional
unfolding of f.

W(O, 0) # 0, F' is transverse to j. We can easily

{(z,u,9) | Fz,u) =j(y)} = {(z, 9(z), f(z)) |z € (R",0)}.
Since (7, f) : (R*1,0) — (R" x R",0) is given by (i, f)(z) = (z, g(z), f(x)), it maps diffeo-
morphically on to the above set. This completes the proof. 0

Proof. 1t is clear that o7 = jo f. Since
show that

Since a cuspidal edge and a swallowtail are singularities of stable map germs (R?, 0) —
(R3,0), we now discuss the stability of unfoldings. Let &, be the local ring of function germs
(R™, 0) — R with the unique maximal ideal is denoted by M,,. For a map germ f : (R", 0) —
(RP,0), we say that f is infinitesimally A-stable if the following equality holds:

_/of af ]
E(n,p) — <8—xl’“.,axn>gn +f g(p,p),

where £(n, p) denotes the £,-module of map germs (R",0) — RP? and f*: E(p,p) — E(n,p)
is the pull back homomorphism defined by f*(h) = ho f. It is known that an infinitesimally
A-stable map germ (R3,0) — (R?,0) is an immersive germ, a cuspidal edge or a swallowtail
1, 5].

For map germs f, g : (R*, 0) — (R?,0), we say that they are K-equivalent if there exists
a diffeomorphism germ ¢ : (R",0) — (R™,0) such that f*(M,)E, = ¢* o g*(M,)E,. This
K-equivalence is an equivalence relation among map germs. Let J%(n,p) be the k-jet space of
map germs (R?, 0) — (R?,0). For any z = j*£(0) € J*(n,p), we set

KF(2) = {4*g(0) | g is K-equivalent to f}.

We call it a KF¥-orbit since it is the orbit of a certain Lie group action. For any map germ
f: (R* x R",0) — (RP,0), we define a map germ j¥f : (R™ x R",0) — J*(n,p) by
4 (50, 140) = 7% fao (0), Where fu(z) = f(z,10) and 7* fuy(£0) = 7*(fuo (& + 20))(0). We have the
following Lemma (cf., [12, 7, 6]).

Lemma 3.2 Under the same notations as the above, j¥f is transverse to K*(j¥fo(0)) for
sufficiently large k if and only if

_ /% Of : oI of
Eln,p) = <8—a:1’ ey axn>gn + fo(Mp)E(n,p) + <6‘u1 (z,0),..., Bur(x’ 0),e1,...,€p, K
where {ey,...,e,} is the standard basis of RP.



The following lemma is implicitly well-known [5, 12]. The proof has been explicitly written
in [10].

Lemma 3.3 Let F': (R® x R",0) — (R? x R",0) be an unfolding of fo of the form F(x,u) =
(f(z,u),u). If ¥ f is transverse to KF(5% f3(0)) for sufficiently large k, then F' is infinitesimally
A-stable.

4 Generic classifications

In this section we give the proof of Theorem 1.1. As we mentioned in the previous sections,
an infinitesimally A-stable map germ (R®* 0) — (R3 0) is an immersion, a cuspidal edge or
a swallowtail. Therefore, we prove that the germ of the line congruence Fi, .y at any point is
infinitesimally A-stable for a generic (x, e).

Since e(u) # 0, the rank of the Jacobian matrix of Fi, ) is greater than or equal to one. We
now regard the parameter u (i.e., the parameter along the line) of the line congruence as the
parameter of a one-dimensional unfolding. For any nonparallel line congruence (x,e) : U —
R? x (R*\ {0}), we denote that x(u) = (z'(u), z*(u), z%(u)) and e(u) = (e!(u), e*(u), e3(u)) for
u = (u',u?) € U, then we have the coordinate representation:

Fraey(u,t) = (z'(u) + tet (u), 2 (u) + te?(u), 2°(u) + te?(u)).

For any fixed (ug, to) € U x I with e®(ug) # 0, we define a non empty open subset Us in U
by Us = {u € U | e3(u) # 0}. We define a function ¢3(u) by

g°(u) = —(2°(u) — yo)/€*(u)

for any u € Us, where yo = 23(ty) + toe(ug). Therefore, we have

for u=u = (u!,u?), T =t — g*(u). We denote the above map by ﬁ(m)(u, T). We remark that
the third component of Fi, ) (u,0) is equal to z*(u) + ¢*(u)e*(u) = yo. It follows from Lemma
3.1 that the map germ Fi;.)(u,T) at (up,0) is a one-dimensional unfolding of

it © Flae) (1, 0) = (2 () + g°(w)e' (w), 2 (w) + ¢° (u)e*(u)),

where 73 : R® — R? is the canonical projection given by #3(y!, 42, v%) = (%, ¥?). The following
lemma is the basis for the proof of Theorem 1.1.

Lemma 4.1 Let W C J*(2,2) be a submanifold. For any fized map germ e : U — R3\ {0}
and any fized point (ug,to) € U X I with e3(ug) # 0, the set

315 (up 1) = 1 | Rty 0 Y, ) s transverse to W at (uo, to)}

is a residual subset in C°(U,R?).
Here, we identify C*(U,R® x (R*\ {0})) with C*(U,R?) x C°(U,R3\ {0}) and use the
relative topology on C°(U,R?) x {e} = C>*(U, R?).



For the proof of Lemma 4.1, we need, as usual, to apply the following fundamental transversality
lemma of Thom (cf., [7], page 53, Lemma 4.6).

Lemma 4.2 Let X, B and Y be C*®-manifolds with W a submanifold of Y. Let j : B —
C®(X,Y) be a mapping (not necessarily continuous) and define ® : X x B — Y by ®(z,b) =

3(b)(z).
Assume that ® is smooth and transverse to W. Then the set {b € B | j(b) is transverse to W'}
is dense in B.

Proof of Lemma 4.1. Let {K j};il be a countable open covering of W such that each closure
K is compact. We define the following set

3Tlfi/,(uo,to),l<j = {a: | jFAs 0 ﬁ’(m,e) Is transverse to W
with ]f’ﬁ'g o] F(x’e)(’u,o, to) - f(j } .

We now prove that 377,

(uorto) K is an open subset. For the purpose, we consider the following
mapping,

3* 0 (U, R — C(Us x I, J¥(2,2))
defined by j*(z) = j¥#3 0 Flz ). It is clear that the mapping j* is continuous. We also define a
subset

Owk, = {g € C®(Us x I, J*(2,2)) | g is transverse to Wat (ug, to) with g(ug, to) € K},

which is open (cf., [7]). Since the restriction map resy, : C*°(U, R3) — C*®(Us, R3) is contin-
wous, 375, (0 1) K, = (resu,) ™' o (%) (Ow,k,) is open. If we show that 3TV uo o), 1, 15 @ dense

subset in C(U, R%), then 573, . .y = iy 305 (uo to), 1, 1S @ residual subset.

Since resy, is surjective, it is enough to show that
3TV, o) 1 U = {w € C®(Us,R¥) | jfftzo Flpe is transverse to Wat (uq, to)
with jf7s o Fip e (uo, to) € Kj} .
is a dense subset in C®(Us, R?).

For any & € C®(Us,R*) and p = (p', p?) € P(2,2; k), we define a mapping fi,py : Us x [ —
R? by

fam(u,t) = (' (u) + p'(u) + g (w)e! (u) +te' (u), 2 (u) + p*(u) + ¢° (w)e? (u) + te*(w)),

where P(2,2; k) denote the space of pairs of polynomials (p!, p?) with degrees at most & without
constant terms. We also define a mapping

DUz x Jx P(2,2;k) — J¥2,2)

by CI)(U, t (p17p2)) = ]ff(m,p) (ua t) = jkf(x,p),t(u)a where f(m,p),t(u) = f(:r,p) (U, t) We may regard
P(2,2; k) as a Euclidean space RY.

Since we can identify P(2,2;k) with J*(2,2) and their tangent spaces, we can easily show
that ® is a submersion at any point, so that it is transverse to W. By Lemma 4.2,

{p=(p",p%) € P(2,2;k) | B2 is transverse to W at (uo, to) with @ pey(uo, to) € K;}
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is dense in P(2,2; k). Hence, we can find (p', p?)1, (p*, p%)2, (', p%)3, ... in P(2,2; k) converging
to (0,0) so that @y 2, is transverse to W on Kj. Since lim; .o ( + ((p',p*);,0)) = x in
C=(Us, R?), Tw,uo t0), 1,05 18 dense in C*(Us, R?). O

We remark that ;T (uo) (7 = 1,2) can also be defined for (ug,to) € U x I with €7 (ug) # 0
and the assertion as the above holds for ;T (). We set

O, ={e € C®(U,R*\ {0}) | (e1(u) x e(n), ea(u) x e(u)) # 0 for any u € U },
then O is a residual subset of C°(U, R*\ {0}). By Lemma 4.1, the set
3TVW,(UO¢O) = {(z,e) | jFr50 F(x,e) is transverse to W at (ug, to) and e € O}

is a residual subset in C*(U,R® x (R*\ {0})).

Proof of Theorem 1.1. Let K; be the K*-orbit (cf., §3) with codimension i in J*(2,2) for
sufficiently large k. We also denote that %(2,2) = (5, Ki € J*(2,2). It has been known that
3(2,2) is a semi-algebraic subset in J¥(2, 2) with codimension greater than 3. Therefore we have
the canonical stratification {S;}.-,of (2, 2) with codim &; > 3. For any (ug, to) with €*(ug) # 0,
we set 3T5(2.9) (uorto) = [ Niet 3185 (uorto)- SiNCe 3Tk, (uoute) 1A 37529, (uo 1) v Tesidual subsets in
C(U,R® x (R*\ {0})),
3 —~ o~
300 t0) = ﬂ 3T, (uosto) 73 T%(2,2), (uo,t0)
i=1

is also a residual subset in C°(U, R* x (R3\ {0})). By the remark after the proof of Lemma 4.1,
iOtuoto) (J = 1,2) are also residual subsets in C°(U,R® x (R \ {0})) respectively. Therefore,
for any fixed (ug,tp) € U x I, there exists a residual subset Oy, ) C C®(U,R® x (R*\ {0}))
such that the map germ Fi, o) at (uo, to) is an infinitesimally A-stable map germ for any (x, e) €
O(uo,10) by Lemma 3.3. Since an infinitesimally 4-stable map germ is an A-stable map germ in
the sense of Mather [12], there exists an open neighbourhood Uy, x Iy, of (ug,tp) in U x I such
that Fig e)|(Uy, X Iy,) is an A-stable map. We can choose countably many points (u;,¢;) € U x [
and their neigbourhoods U, x Iy, (i = 1,2,...) such that Fi; ¢ |(Uy, % Iy;) is an A-stable map
and U x I =|J2,(Uy, % I,). Since each Oy, 4, is a residual subset of C*(U,R? x (R3\ {0})),
Oy =2, O, 1) 1s a residual subset of C°(U, R?® x (R*\ {0})). It is clear that the germ Fl, )
at any point (u,t) € U x [ is infinitesimally A-stable for any (z, e) € Os.

It is easy to show that the mapping F : C®(U,R3 x (R*\ {0})) — C°(U x I, R?) defined
by F(x,e) = F(;.) is continuous. Since the set

S ={f € C®U xI,R*) | f is infinitesimally A-stable at any point € U x I}

is an open subset, O = F~}(S) is an open subset of C®°(U,R* x (R*\ {0})). By the previous
arguments, we have Oy C O, so that O is open dense subset of C®(U,R* x (R*\ {0})). This
completes the proof of Theorem 1.1. U

5 Normal congruences and Lagrangian congruences

It has been known that the evolute of a surface is the caustic of a certain Lagrangian submanifold
in the cotangent bundle T*R®. We now try to understand this phenomenon in a general context

8



for normal congruences. Let Flg e : U x I — R?® be a line congruence. We say that Flg.e
is a normal congruence if the following condition holds: for any point u = (u',u?) € U, there
exist a neighbourhood V C U of w and a regular surface y : V — R? such that the normal of
y(v) is parallel to e(v) at any v € V. We also say that F, ) is an ezact normal congruence if
x is a regular surface and e(u) is the normal vector &(u) at u € U. Then we have the following
classical characterization theorem for normal congruences (cf., [18]).

Proposition 5.1 A line congruence Fi, .y 1s a normal congruence if and only iof

(e () ) = o= ().

Proof. Without the loss of generality, we consider the case |je(u)]] = 1. We consider a surface
y(u) = z(u) + t(u)e(u). By a straightforward calculation, we have

Yy, =, -+ tie -+ tel-,

where 7 = 1, 2. Under the condition that y is regular at u, e(u) is a normal vector to y at u € U
if and only if
0= <€, ZUZ‘> +1; + <€, €i> .

Since e is a unit vector, the above condition is equivalent to the condition that
t; + <€, ZUZ‘> = 0.

We have the integrability condition ¢19 = £9; of the above first order partial differential equations
for the unknown function #(w) which is equivalent to the condition

<.’,131, €2> — <$2, €1>.

The above function t(u) exists at least locally if and only if the above condition holds. If the
surface vy is singular at ug, there exists A > 0 such that the surface y, (u) = x(u)+(t(u)+N)e(u)
is an immersion around ug by Lemmas 2.1, 2.2. The function ¢(u) + A is also a solution of the
equation. L]

Let Emb (U, R®?) = {z |  : U — R* embedding } be the space of regular surfaces with the
Whitney C*®°-topology. We consider the space of exact normal congruences defined by

EN (U,R®* x (R*\ {0})) = {(=, e) | © € Emb (U,R® x (R*\ {0})),
e(u) is a normal vector of @ at x(u)}.

We have the following well known theorem. Porteous might be the first person who presented
the assertion in his celebrating paper [14]. However the proof of the theorem has been given
by Looijenga [11].

Theorem 5.2 There exists an open dense subset O C Emb (U, R?) such that the germ of the
ezact normal congruence Fig oy at any point (uo,to) € U x I is a Lagrangian stable map germ
for any x € O.

In other wards, Fi, .y is an immersive germ, A-equivalent to the cuspidal edge, the swallow-
tail, the pyramad or the purse for any « € O.

Here we refer to the article [1] for the definition and basic properties of Lagrangian stable
map germs.



We now define a natural map 7 : EN (U, R* x (R*\ {0})) — Emb (U, R3) by n(x,e) = =.
It is a retraction, so that a continuous open map. Therefore we have the following corollary:

Corollary 5.3 There exists an open dense subset O C EN (U, R? x (R3\ {0})) such that the
germ of an ezact normal congruence Fi, ¢y at any point (ug,to) € U X I is a Lagrangian stable
map germ for any (x,e) € O.

By the above theorems, we now pay attention to Lagrangian singularities. We consider
the cotangent bundle 7 : T*R?® — R? over R® with the canonical symplectic structure w =
Z?:l dx; Ndp;, where (1, z9, T3, p1, P2, P3) is the canonical coordinate. For any line congruence
Flz.e), we define a smooth mapping Liye) : U X [ — T*R? = R?® x (R*)? by

(1) = (o) + 5500 15500 )

Lemma 5.4 Suppose that ® : U — R® is an immersion and e(u) ¢ Tyuyx(U) for anyu € U,
then Lz ¢y 18 an immersion.

Proof. We may also assume that ||e(u)|| = 1. We have

8[,(%6) N )

P45 ) = (1 (a) + 1640, e
and 5L

S w) = (e(u), 0)
If e;(u) x ex(u) # 0,
OF(z0) o 0F(z.0)
Bu, (u,t) (1=1,2) and o (u,t)

are linearly independent.

Suppose that e;{u) x eg(u) = 0. If ey (u) =
Therefore we consider the case when e;(u) # 0
a that

then @) (u) and e(u) are linearly independent.
=1, 2). In this case there exists a real number

0,
(i
e1(u) = aey(u).
Counsider a linear relation
A (21 (u) +teg(u), er(u)) + Ay (mau) + teg(u), ex(u)) + ple(u), 0) = 0.
Then we have a\; -+ Ay = 0, so that
M (1 (u) +tei(u) — Aa(za(u) + tex(u)) + pe(u) = 0.

This is equivalent to the condition that Ai(x(u) — axs(u) + pe(u) = 0. Therefore we have
)\1 = )\2 = U= 0. O

We say that Fi, . is a Lagrangian line congruence if L, .y is a Lagrangian immersion (i.e,
a immersion with (L .))*w = 0).
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Proposition 5.5 Under the same situation as the above, Flze) is a normal congruence if and
only if it s a Lagrangian line congruence.

Proof. We consider the canonical 1-form 8 = Z?:] pdz’, then we have df = w. It follows that

(u)d (xi(u) + tfejﬂ(u))

(w) (d:ﬁ(u) + - ()t + tdi(u)>

lell lell

=3 ( (w)da' (u) + tM(u)d“(uO +dt,

e

where @(u) = (z'(u), z*(u), z3(u)) and e(u) = (c'(u), e2(u), 3 (u)).

Therefore we have

Ll ey (w) = dL, ) (0)

e
:i: <d“i” (w) A da () + IliH (w)dt A dﬁ(u))
~((Gep). oo~ ((gep), )t nat
+ <I_Zﬂ (@)) du® A dt
(e (), o 1
~((en). o= ((ap) ot

It follows that Lf, ,,(w) = 0 if and only if
o) T2 T o) %)
lell /4 lell/

By Proposition 3.3 and the proof of Proposition 3.1, Fi, . is a Lagrangian line congruence if
and only if there exists a smooth function t : U — R such that @(u)+¢(u)e(u) is an immersion
and

(]

Therefore we define the space of Lagrangian (normal) line congruences as follows:

L(UR?xRx (R*\{0})) = {(z,t,e) | z(u)+ t(uv)e(u)

is an immersion with the condition (x) holds }.
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We adopt the Whitney C*®-topology on L (U, R* x R x (R*\ {0}). We now define a map
Trp: C®(U,R* x R x (R*\ {0})) — C®(U,R* x (R*\ {0}))

by Trp(z(u), t(u), e(u)) = (x(u) + t(u)e(u), e(u)). We call T'rp the transitive projection. Then
we have the following proposition:

Proposition 5.6 Under the same notations as the above paragraph, the mapping Trp is an
open and continuous map under the Whitney C*-topology.

Proof. For any natural number & € N, we define a map between k-jet spaces
Trp* s JHUR® x R x (B {0})) — JH(U,R x (R*\ {0}))

by Trp*(5%(x,t, e)(ug)) = j%(x + te, e)(uo).
By a straight forward calculation 7'rp* is a submersion, so that it is an open map. It follows
that T'rp is an open continuous map. O

We set
N (U, R? x (R*\ {0})) = Trp(L (U,R* x R x (R*\ {0}))).

By definition, we can regard N (U, R x (R*\ {0})) as the space of normal congruences. Here, we
consider the relative topology induced from the Whitney C'*°-topology of C*°(U, R? x (R*\ {0})).
Then we have the following theorem.

Theorem 5.7 There exists an open dense subset O C N (U,R* x (R®*\ {0})) such that the
germ of the normal congruence Fig . ey at any point (v, to) € U x I is a Lagrangian stable
map germ for any (x,e) € O'.

Therefore, Fig ) ts A-equivalent to an immersion germ, the cuspidal edge, the swallowtail,
the pyramid or the purse for any (x,e) € O'.

Proof. By Theorem 5.3, there exists an open dense subset @ C EN(U,R® x (R*\ {0})) such
that the germ of the exact normal congruence Fi, .y at any point (ug, o) € U x I is a Lagrangian
stable map germ for any (x,e) € O. Since the transitive projection Trp is an open map and
O = Trp(O) is an open dense subset in N (U, R?® x (R*\ {0})). This completes the proof. U

The theorem asserts that generic singularities of normal congruences are the same as the
generic classification of singularities of exact normal congruences.

6 Equiaffine normal congruences

We now consider another important class of line congruences. In [9] it has been studied the affine
evolute of a nondegenerate plane curve. We observe that the affine evolute of a nondegenerate
plane curve is the caustic of a certain Lagrangian submanifold in T*R?. However, the similar
calculations for nondegenerate surfaces as those for the curves in [9] cannot work because of
the extremely complicated situation. Nevertheless, as an application of the results in §5, we
will have an observation which authorizes that the similar phenomenon like as the curve case
might occur for the surface case.
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We consider R? as a 3-dimensional affine space with a volume element w given by
w(ey, eq, e3) = det (eq, ey, €3),

where { ej, ey, €3 } is the standard basis of R®. This volume element w is parallel with respect
to the standard flat affine connection D on R3. Let « : U — R? be a regular surface with
x(U) = M. If we consider a transversal vector field € along M, then for each u € U, we
decompose the tangent space T,R® as the direct sum of T,M and (&€(p))gr, where p = x(u). If v
and w are vector fields on M, we decompose D,w into tangential and transversal components
as Dyw = V,w + h(v,w)€. Then V is a torsion-free affine connection on M called the induced
affine connection, and h is a tensor field which defines a symmetric bilinear form on each tangent
space T,M. We call h the affine fundamental form induced by & We can also decompose D&
into tangential and transversal components as D& = —Sv + 7(v)&. Here S is a tensor field of
type (1,1) called the shape operator determined by &, and 7 is a 1-form called the transversal
connection form. Finally, we introduce a volume element 6 on M setting 6(vq, ve) = w(vy, vg, §)
for vy, vs tangent to M. It has been known that V,0 = 7(v)0 for v € T,M (cf., [13]). The
surface  : U — R3 is said to be nondegenerate if h is nondegenerate at each point M. We
remark that the notion of nondegeneracy is independent of the choice of transversal field £ on
M. Tf we choose the Euclidean normal as the transversal field, the surface is nondegenerate
if and only if the Gaussian curvature never vanishes. Assume now that ¢ : U — R?® is a
nondegenerate surface. A local transversal field € for which 7 = 0 (i.e. D,€ is tangent to
M) is said to be equiaffine. Two important examples of equiaffine transversal fields are the
Euclidean field of unit normals and the Blaschke affine normal field &, which is determined up
to a sign by the equiaffine condition and the requirement that 6 equals the volume element
for the bilinear form h associated to £ (see, for example [13]). We now have important classes
of line congruences as follows: Let @ : U — R3 be nondegenerate regular surface (i.e. the
Gaussian curvature K # 0). Let € be an equiaffine normal field along ®(U) = M. Then the
line congruence Fig¢)(u,t) = x(u) + t§(u) is called the ezact equiaffine normal congruence. If
€ is the Blaschke normal field, we call F, ¢ the exact Blaschke normal congruence.
We now define the space of non-degenerate regular surfaces as follows:

Emb,,(U,R?*) = {z € Emb (U, R®) | the Gaussian curvaure K (u) # 0 for any u € U }.
We also consider the space of exact affine normal congruences
EAN (U, R?*x (R*\ {0})) = {(z, &) | x € Emb,,,(U,R?), £(u) is an affine normal of x at z(u) }.

As in the case for exact normal congruences, the focal points of F, ¢ can be related to the
critical point theory for a certain class of functions. For each u = (u!,u?) € U, we decompose
the vector p — x(u) into tangential and transversal components as follows,

p—z(u) = v+ pp(w)€(u),

where v € T, M. The real valued function p, is called an affine support function associated
to the nondegenerate surface with equiaffine transversal field £&. Then we have the following

proposition (cf., [13]).

Proposition 6.1 Let ¢ : U — R3 be a nondegenerate surface with equiaffine transversal field
€. Then Op,/0u;(u) =0 (1= 1,2) if and only if

p—x(u) = pp(u)§(u).
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Proof. We differentiate the equality p — x(u) = v + p,(u)§(u) and obtain

2 (u)6(0) + (1) Dy 9

= Vo/ou,v + h(0/0u;, v)§(u) + g—'zjj(u)f(u) — pp(u)S(8/0u;).

— @y, (1) = Dajou,v +

It follows that
Vojou,¥ = —q, (1) + pp(u)S(0/0uy),

pp, \ _ -
9. (u) = —h(d/0u;, v).

Since h is nondegenerate, dp,/0u;(u) = 0 (i = 1,2) if and only if v = 0. This means that
p— 2(u) = py(u)E(u). 0

We now regard the affine support function as a generating family of a certain Lagrangian
immersion. For the definition and basic properties of generating families of Lagrangian immer-
sions, see [1]. By definition, the affine support function is given by

ol = (p— el o)) — (v ps0)),

where v € T,y M by using the canonical inner product. Therefore, we have

app _ &

where p = (p',p?% p?) and €(u) = (Y(u),%(u),€3(u)). This means that the corresponding
Lagrangian immersion is a map L : U x I — T*R? defined by

Llu,t) = (a:(u) + 1€ (u), H—5H—2(u)> .

We have the following characterization that L(u,t) is a Lagrangian immersion.

Proposition 6.2 Let Fi, ¢ be a line congruence. Then the following are equivalent:
(1) L(u,t) = (z(u) + t&(uw), (&/1|1€]1*)(w)) is a Lagrangian immersion.
(2) ® and & satisfy the condition that

(€1, T2) = (€y, 1) and (£, &) = (§,&,) =0.
(3) L(u,t) = (x(u) + t&(u), &(u)) is a Lagrangian immersion.

Proof. Let 0 be the canonical 1-form, then we have

L= <H—§TQ— (dz + &dt + td§)>

3 t€ >
= ,d d ——.d )
@m2m>+t+Qmwﬁ
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It follows that

. 3 13 '3 >
L'w=d d d d d| —— d€.
. <||s||2>A T et <||£||2 A

Since d(&/]1€]1*) A d€ = ((€,€1)(§, &) — (€, €)(€, &1))du! Adu® =0, L*w = 0 if and only if

<<u§n)“’> ) <<Hs€n>w>
(o) (&) o

This condition is equivalent to the condition that

(€1, 2) = (€2, 1) and (§,&;) = (£, &,) = 0.
On the other hand, we have

L£70= (& d(z + L£))
= (&, (dx + &dt + tdE))
= (&, d) + ||€|[*dt + (€, dE).

and

It follows that

Lrw=d&Ndx + d||€||> Adt + d(t€) A dé
=d€ Ndx + (€,dE) N dt

= ((&), T2) — (&, 1) )du' A du?
+ (&, &) dut A dt + (€, €,)du? Adt = 0.

This condition is equivalent to the condition that

(€1, x2) = (€y, @) and (£, &) = (€,£,) = 0.

We have the following theorem as a corollary of the above propositions.

Theorem 6.3 Let  : U — R® be a nondegenerate surface with equiaffine transversal field
€. Then the exact affine normal congruence Fi, ¢ (u,t) = x(u) + t€(u) is a normal congruence
and hence it is a Lagrangian line congruence.

Proof. By Propositions 6.1 and 6.2, we have
<€1aw2> — <£27m1> and <{B@,£> =0 (Z = 17 2)

It follows that

£ _ & (&9, &
(usu)Z. = Vel ~ el © T el

Therefore we have

i), =) = (e = () = ((Gér), =)
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This completes the proof. U

We now give a final remark on equiaffine normal congruences. For the purpose,we consider
the following spaces:

AN (U, R? x (R*\ {0})) = {(=, ) |Therc exists ¢(u) such that x(u) + t(u)e(u)
is nondegenerate and there exists an equiaffine normal
&(u) of x(u) + t(u)e(u) such that e(u) and &(u) are parallel }.

EN,Lg(U, R?* x (R*\ {0})) = {(x,e) € EN (U, R*® x (R\ {0}) |z is nondegenerate }.
Nua(U,R? x (R*\ {0})) = Trp(Laa(U, R* x R x (R\ {0}))),
where

Log(U R* x R x (R*\ {0})) = {(,t,e) € L(U,R* xR x (R\ {0})) |

x(u) + t(u)e(u) is nondegenerate }.
By the previous arguments, we have the following relations:

ENL(U,R?® x (R*\ {0})) < EAN(U,R® x (R*\ {0}))
C AN(U,R® x (R*\ {0})) C Npua(U, R? x (R*\ {0})).

We already have generic classifications of line congruences in both spaces EN,4(U, R? x (R?®\
{0})) and N,4(U, R® x (R*\ {0})) in §5. As a consequence, germs at any point of generic con-
gruences in both spaces are Lagrangian stable. We can expect that germs of generic equiaffine
normal congruences are Lagrangian stable at any point. It is, however, still an open problem.
Here, we can only assert that equiaffine normal congruences are Lagrangian congruences. The
most important class of equiaffine normal congruences is the class of Blaschke affine normal
congruences (cf., [4, 13].) The generic classification of such a class is also still unknown.

Conjectures (1) Germs of generic equiaffine normal congruences at each point are Lagrangian
stable.
(2) Germs of generic Blaschke affine normal congruences at each point are Lagrangian stable.
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