645 research outputs found

    Quantum criticality and first-order transitions in the extended periodic Anderson model

    Get PDF
    We investigate the behavior of the periodic Anderson model in the presence of dd-ff Coulomb interaction (UdfU_{df}) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of UdfU_{df} and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility and investigate how the position of the QCP depends on the other parameters of the Hamiltonian. For larger values of UdfU_{df}, the Kondo regime is bounded by two first-order transitions. These first-order transitions merge into a triple point at a certain value of UdfU_{df}. For even larger UdfU_{df} valence skipping occurs. Although the other methods do not give a critical point, they support this scenario.Comment: 8 pages, 7 figure

    Hubbard physics in the symmetric half-filled periodic Anderson-Hubbard model

    Get PDF
    Two very different methods -- exact diagonalization on finite chains and a variational method -- are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculate the density of doubly occupied dd sites as a function of various parameters. In the absence of on-site Coulomb interaction (UfU_f) between ff electrons, the two methods yield similar results. The double occupancy of dd levels remains always finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives the same result for finite UfU_f, while the Gutzwiller method leads to a Brinkman-Rice transition at a critical value (UdcU_d^c), which depends on UfU_f and VV.Comment: 10 pages, 5 figure

    Space-time correlation and momentum exchanges in compound open-channel flow by simultaneous measurements of two-sets of ADVs

    Get PDF
    River hydrodynamicsOverbank flows and vegetatio

    Periodic Anderson model with correlated conduction electrons: Variational and exact diagonalization study

    Get PDF
    We investigate an extended version of the periodic Anderson model (the so-called periodic Anderson-Hubbard model) with the aim to understand the role of interaction between conduction electrons in the formation of the heavy-fermion and mixed-valence states. Two methods are used: (i) variational calculation with the Gutzwiller wave function optimizing numerically the ground-state energy and (ii) exact diagonalization of the Hamiltonian for short chains. The f-level occupancy and the renormalization factor of the quasiparticles are calculated as a function of the energy of the f orbital for a wide range of the interaction parameters. The results obtained by the two methods are in reasonably good agreement for the periodic Anderson model. The agreement is maintained even when the interaction between band electrons, U d, is taken into account, except for the half-filled case. This discrepancy can be explained by the difference between the physics of the one- and higher-dimensional models. We find that this interaction shifts and widens the energy range of the bare f level, where heavy-fermion behavior can be observed. For large-enough U d this range may lie even above the bare conduction band. The Gutzwiller method indicates a robust transition from Kondo insulator to Mott insulator in the half-filled model, while U d enhances the quasiparticle mass when the filling is close to half filling. © 2012 American Physical Society

    Periodic anderson model with d-f interaction

    Get PDF
    We investigate an extended version of the periodic Anderson model where an interaction is switched on between the doubly occupied d- and f-sites. We perform variational calculations using the Gutzwiller trial wave function. We calculate the f-level occupancy as a function of the f-level energy with different interaction strengths. It is shown that the region of valence transition is sharpened due to the new interaction

    Eff ect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc defi ciency: a modelling study

    Get PDF
    Background Increasing concentrations of atmospheric carbon dioxide (CO2) lower the content of zinc and other nutrients in important food crops. Zinc defi ciency is currently responsible for large burdens of disease globally, and the populations who are at highest risk of zinc defi ciency also receive most of their dietary zinc from crops. By modelling dietary intake of bioavailable zinc for the populations of 188 countries under both an ambient CO2 and elevated CO2 scenario, we sought to estimate the eff ect of anthropogenic CO2 emissions on the global risk of zinc defi ciency. Methods We estimated per capita per day bioavailable intake of zinc for the populations of 188 countries at ambient CO2 concentrations (375–384 ppm) using food balance sheet data for 2003–07 from the Food and Agriculture Organization. We then used previously published data from free air CO2 enrichment and open-top chamber experiments to model zinc intake at elevated CO2 concentrations (550 ppm, which is the concentration expected by 2050). Estimates developed by the International Zinc Nutrition Consultative Group were used for country-specifi c theoretical mean daily per-capita physiological requirements for zinc. Finally, we used these data on zinc bioavailability and population-weighted estimated average zinc requirements to estimate the risk of inadequate zinc intake among the populations of the diff erent nations under the two scenarios (ambient and elevated CO2). The diff erence between the population at risk at elevated and ambient CO2 concentrations (ie, population at new risk of zinc defi ciency) was our measure of impact. Findings The total number of people estimated to be placed at new risk of zinc defi ciency by 2050 was 138 million (95% CI 120–156). The people likely to be most aff ected live in Africa and South Asia, with nearly 48 million (32–63) residing in India alone. Global maps of increased risk show signifi cant heterogeneity. Interpretation Our results indicate that one heretofore unquantifi ed human health eff ect associated with anthropogenic CO2 emissions will be a signifi cant increase in the human population at risk of zinc defi ciency. Our country-specifi c fi ndings can be used to help guide interventions aimed at reducing this vulnerability
    • 

    corecore