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We investigate the behavior of the periodic Anderson model in the presence of d-f Coulomb
interaction (Udf ) using mean-field theory, variational calculation, and exact diagonalization of finite
chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of
Udf and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive
the critical exponent for the valence susceptibility and investigate how the position of the QCP
depends on the other parameters of the Hamiltonian. For larger values of Udf , the Kondo regime is
bounded by two first-order transitions. These first-order transitions merge into a triple point at a
certain value of Udf . For even larger Udf valence skipping occurs. Although the other methods do
not give a critical point, they support this scenario.

PACS numbers: 71.10.Fd, 71.27.+a, 75.30.Mb

I. INTRODUCTION

Heavy-fermion compounds often show remarkable phe-
nomena like unconventional superconductivity or un-
usual Fermi-liquid state. It turned out that in those
compounds, for instance CeIn3,

1 whose superconduct-
ing state is unconventional, the pairing between electrons
is mediated by antiferromagnetic spin fluctuations. The
superconducting phase is formed near the antiferromag-
netic quantum critical point (QCP)2 as the pressure or in
other cases the concentration of a component is varied.
However, this theory seems to be insufficient to explain
the temperature-pressure phase diagram of CeCu2Ge2 or
CeCu2Si2, where a superconducting dome with enhanced
transition temperature is located far away from the an-
tiferromagnetic critical point. Since this discovery, these
compounds have drawn much attention both experimen-
tally and theoretically. It has been argued that this phe-
nomenon is related to the critical valence fluctuations of
Ce ions,3–14 that is, to the existence of a second QCP.

The simplest model of heavy-fermion compounds is the
periodic Anderson model (PAM).15 It is known, however,
that the mixed-valence regime appears always in this
model as a smooth crossover, and valence fluctuations do
not become critical for any choice of the parameters. A
local Coulomb interaction between the conduction and
localized electrons is needed for the appearance of a
sharp transition and critical valence fluctuations.4,11 The
Hamiltonian of this extended periodic Anderson model
can be written using standard notations in the following
form:

H =
∑

k,σ

εd(k)d̂
†
kσ d̂kσ − V

∑

j,σ

(

f̂ †
jσ d̂jσ + d̂†jσ f̂jσ

)

+ εf
∑

j,σ

n̂f
jσ + Uf

∑

j

n̂f
j↑n̂

f
j↓ + Udf

∑

j,σ,σ′

n̂f
jσn̂

d
jσ′ .

(1)

After Onishi and Miyake’s pioneering work,4 recently,
this model has been investigated by several modern tech-
niques, including density matrix renormalization group,9

dynamical mean field,16–18 variational calculations,4,19

projector based renormalization approach20, and fluctu-
ation exchange approximation.21 It has been found that
a first-order valence transition and a QCP may appear
due to Udf .

Previous calculations4,16,19 focused on the properties
at infinite or large Uf . Mainly the existence of a QCP
and the possibility of first-order transition was addressed.
Our main goal here is to study the critical behavior for
arbitrary values of Uf . We investigate how the QCP and
the εf −Udf phase diagram depend on the parameters of
the model in the half-filled case. In our previous paper22

we have shown that the Gutzwiller’s variational method
gives reliable results concerning the valence, therefore it
is worth studying the valence transition by this method.

It is worth noting that a first-order transition from
Mott insulator to Kondo insulator has been found23 in a
model with a more general Hamiltonian, too, including
Hund’s coupling and interaction between d-electrons. We
do not consider the Hund’s coupling here since the ap-
pearance of critical valence fluctuations was attributed
to the direct Coulomb interaction between d- and f -
electrons.4,11 The exchange coupling between them prob-
ably plays a minor role in this respect.

Note that in a previous paper of ours24 a variational
approach was formulated for another kind of extended
periodic Anderson model, where a different form was cho-
sen for the d-f interaction, a spin-dependent four-body
term. Neither a QCP, nor a first-order valence transition
has been found in that model.

The setup of the paper is as follows. In Sec. II, we
perform a mean-field calculation to demonstrate in the
simplest way how Udf affects the intermediate valence
regime. In Sec. III, the variational approach is intro-
duced, which is based on the Gutzwiller wave function.
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We analyze the quantum critical behavior and the disap-
pearance of the Kondo regime at a triple point. More-
over, we construct the εf − Udf phase diagram. In Sec.
IV, we carry out exact diagonalization to investigate the
model in one dimension and compare the results with
that of mean-field theory and the Gutzwiller approach.
Finally, in Sec. V, our conclusions are presented.

II. MEAN-FIELD CALCULATION

First of all we will study the problem by mean-field
methods. In this approach some kind of order has to be
assumed. We performed calculations by assuming two
possibilities: a) the system is paramagnetic; b) it pos-
sesses a spatially oscillating magnetic order with a total
magnetization zero. The state with lowest energy is ac-
cepted as the ground state. According to our calcula-
tions, the mean-field equations always have a paramag-
netic solution, but in the Kondo regime, where localized
moments are present, ordering of the moments leads to
the lowering of the energy. We assume a simple cubic
lattice in the following calculations, which can be parti-
tioned into two sublattices (A and B). We expect that
in the broken symmetry phase the electrons are ordered
on the two sublattices in an alternating fashion, that is:

〈

n̂f
jσ

〉

=
1

2

[

nf + σmfe
iq

0
·Rj

]

, (2)

where mf is the magnetization of the sublattice and q0 =
π/a(1, 1, 1), so that q0Rj = 2πn on sublattice A and
q0Rj = (2n + 1)π on sublattice B (n is an integer),
and nf is the average number of f -electrons per site.
The values of nf and mf need to be determined self-
consistently. Similar oscillation can be assumed for the
d-electrons,

〈

n̂d
jσ

〉

=
1

2

[

nd + σmde
iq

0
·Rj

]

, (3)

althoughmd will not appear explicitly in the calculations.
The mean-field Hamiltonian is

Hm
AF =

∑

k,σ

[

εd(k) + Udfnf

]

d̂†kσ d̂kσ

+
∑

j,σ

[

εf +
Uf

2

(

nf − σeiq0
·Rjmf

)

+ Udfnd

]

n̂f
jσ

+V
∑

j,σ

(

f̂ †
jσ d̂jσ + d̂†jσf̂jσ

)

−NUf

4

(

n2
f −m2

f

)

−NUdfnfnd, (4)

where the k sum extends over the whole Brillouin zone
of the simple cubic lattice, and N is the number of sites.
Due to the assumed magnetic ordering, the size of the
Brillouin zone is reduced to half of its original size. In
order to restrict the k sum to the magnetic Brillouin zone,

we split the original sum into two parts by introducing

the operators d̂†k+q0σ
and f̂ †

k+q0σ
. We suppose that the

dispersion relation possesses the nesting property:

εd(k + q0) = −εd(k), (5)

which is valid in a tight-binding model with nearest
neighbor hopping. This fixes the zero of the energy scale.
Then the mean-field Hamiltonian can be rewritten in
Bloch representation:

Hm
AF =

∑

k,σ

′









d̂kσ
d̂k+q0σ

f̂kσ
f̂k+q0σ









†

H(k, σ)









d̂kσ
d̂k+q0σ

f̂kσ
f̂k+q0σ









−NUf

4

(

n2
f −m2

f

)

−NUdfnfnd, (6)

where the prime denotes that the summation is carried
out over the magnetic Brillouin zone, and

H(k, σ) =









ξd(k) 0 V 0

0 ξ̃d(k) 0 V
V 0 ξf −Ufσmf/2
0 V −Ufσmf/2 ξf









,

(7)

where ξf = εf +Ufnf/2+Udfnd, ξd(k) = εd(k) +Udfnf

and ξ̃d(k) = −εd(k) + Udfnf . This Hamiltonian can be
diagonalized by the unitary transformation T (kσ), which
is a real matrix in our case, leading to

Hm
AF =

∑

k,σ

′

[

Ea(k)Â
†
kσÂkσ + Eb(k)B̂

†
kσB̂kσ

+Ec(k)Ĉ
†
kσĈkσ + Ed(k)D̂

†
kσD̂kσ

]

−NUf

4

(

n2
f −m2

f

)

−NUdfnfnd, (8)

where

(

Â†
kσ B̂†

kσ Ĉ†
kσ D̂†

kσ

)

=
(

d̂†kσ d̂†k+q
0
σ f̂ †

kσ f̂ †
k+q

0
σ

)

T †(kσ). (9)

The diagonalization is done numerically for each k

value and we sort the eigenvalues in increasing order
[Ea(k) ≤ Eb(k) ≤ Ec(k) ≤ Ed(k)]. Moreover, the eigen-
values have to be determined iteratively, since nf , mf

and nd appearing in H(k, σ) have to satisfy a self-
consistency condition. This condition can easily be for-
mulated in the half-filled case, where—as it will be dis-
cussed below—the two lower bands with dispersionEa(k)
and Eb(k) are fully occupied and the two higher lying
bands are empty. The conditions of self-consistency for
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nf and mf are

nf =
1

N

∑

k,σ

′

[

T 2
31(kσ) + T 2

32(kσ) + T 2
41(kσ) + T 2

42(kσ)
]

,

(10)

mf =
4

N

∑

k

′[T31(k ↑)T41(k ↑) + T32(k ↑)T42(k ↑)
]

,

(11)

and the total energy is

EAF
g =

∑

k,σ

′[

Ea(k) + Eb(k)
]

−NUf

4

(

n2
f −m2

f

)

−NUdfnfnd. (12)

Before evaluating the self-consistency equations, we re-
turn to the problem of the eigenvalue equations. Analytic
expressions can be given at the symmetric point, and the
obtained four bands for Udf = 0 become simply

Eα(k) = ± 1√
2

[

ε2d(k) + U2
fm

2
f + 2V 2

±
√

(

ε2d(k)− U2
fm

2
f

)2

+ 4V 2

(

ε2d(k) + U2
fm

2
f

)

]
1

2

.

(13)

The band structure is displayed in Fig. 1 for the one-
dimensional tight-binding case for a special, but non-
symmetric choice of the parameters. In higher dimen-

E
(k
)/
W

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ka
-1.5 -1 -0.5 0 0.5 1 1.5

FIG. 1: The dispersion curves of the states diagonalizing
the mean-field Hamiltonian for Uf/W = 0.5, Udf/W = 0,
εf/W = −0.1, V/W = 0.1.

sions, the system does not necessary remain insulating if
the gap opens at different energies in different points of
the zone boundary.
The self-consistency equations always have a param-

agnetic solution, mf = 0, and in certain cases they have
a magnetic solution, |mf | > 0. We compare the energies
of both solutions and accept that one, which has lower

energy. It is worth noting that the polarization of the d-
electrons, md, is also nonzero and its sign is opposite to
mf in the magnetic solution (though its value is smaller
than mf by an order of magnitude).

In the actual calculations we do not work in k-space.
The summations over k are carried out by assuming a
constant density of states ρ(ε) = 1/W in the interval
ε ∈ [−W/2,W/2]. The same ρ(ε) will be used in the
variational calculation, too. The numerical results for
nf are shown in Fig. 2 for different values of Udf . As

n
f

0

0.5

1

1.5

2

εf/W
-4 -3 -2 -1 0 1

FIG. 2: The f -level occupancy as a function of εf obtained by
mean-field theory. The solid, dashed and dotted lines belong
to Udf/W = 0; 0.4; 1, respectively, V/W = 0.1, Uf/W = 3 in
all cases.

long as the f -level is nearly fully occupied or empty,
the paramagnetic solution is favorable, while when the
occupancy is nearly 1, the magnetic solution has lower
energy. For Udf/W = 0, the f -level occupancy is contin-
uous, although there is a discontinuity in its derivative
at the point where the paramagnetic solution switches
to magnetic or vice versa. This happens in Fig. 2 at
εf/W ≈ −3.45 and 0.45. For increasing Udf values,
first the mixed-valence regime narrows, then a jump, a
first-order transition appears in the f -level occupancy be-
tween the paramagnetic and the magnetic solution and
the Kondo regime shrinks rapidly. This first-order transi-
tion has already been found by other calculations.16,19 As
is seen here, this simple mean-field approach can also ac-
count for it. The mean-field theory gives a critical value
of U c

df/W ≈ 0.26 for V/W = 0.1, Uf/W = 3.

At a certain value of Udf above U c
df the magnetic solu-

tion is stable in a single point, εf = −Uf/2. In this point
the paramagnetic solutions with nf ≈ 2 and nf ≈ 0, and
the magnetic solution with nf = 1 have the same energy,
that is, three states coexist. This is a triple point, since
three first-order transition lines meet here. For larger
Udf values, beyond the triple point, a so-called valence
skipping occurs, that is, the valence state nf ≈ 1 is miss-
ing, since a direct first-order transition takes place from
nf ≈ 2 to nf ≈ 0. It is interesting to note that so far
the valence skipping (which was observed in several com-
pounds, for example BaBiO3) has been attributed to the



4

presence of a negative Uf .
25 As it is demonstrated here,

large enough Udf can also lead to valence skipping, even

if Uf > 0. The mean-field theory gives U triple
df /W ≈ 1.75

for V/W = 0.1, Uf/W = 3. Note that this is in good

agreement with the result U triple
df ≈ Uf/2+W/4 that will

be obtained by the Gutzwiller method.
This picture remains valid even when Uf is small, but

finite, compared to the bandwidth. Although no plateau
with nf ≈ 1 is formed, that is, there is no Kondo-regime,
a stable magnetic solution is found near the symmetric
point, and this regime is bounded by first-order transi-
tions above a finite U c

df . Note that for Uf/W = 0 there
is no triple point due to the lack of magnetic solution.
However, a direct first-order transition appears between
the paramagnetic states with solution between nf ≈ 2
and nf ≈ 0 above a certain value of Udf .
Although this theory gives a qualitatively good de-

scription of the first-order transition, there are several
problems with it. Firstly, we had to assume a magnetic
order of spin-density-wave type, while no long-range or-
der is expected in the Kondo regime. Second, the valence
susceptibility, which is defined by

χV = −dnf

dεf
, (14)

is not a continuous function, as is mentioned above, even
below U c

df/W , where nf is continuous. The mean-field
approach does not provide us with a critical point, where
χV would diverge. In order to find a QCP and to inves-
tigate its properties, we need a more accurate calcula-
tion. This is done in the next section by the variational
method.

III. VARIATIONAL CALCULATION

In what follows we generalize the variational approach
used in [Ref. 22,26] and summarize briefly the main steps
of the calculation. We restrict ourselves to the param-
agnetic case, that is, the number of up-spin and down-
spin electrons are assumed to be equal locally, too. As it
will be pointed out, the quantum criticality and the first-
order transition appear without any further assumptions,
in contrast to the mean-field calculation. The trial state
is expressed in terms of Gutzwiller projectors:

|Ψ〉 = P̂ (f1d2)P̂ (f1d1)P̂ (f2d2)P̂ (f2d1)P̂ (f2)|Ψ0〉,
(15)

where

|Ψ0〉 =
∏

σ

∏

k

[

u(k)f̂ †
k,σ + v(k)d̂†k,σ

]

|0〉 (16)

contains the mixing amplitudes u(k) and v(k) as vari-
ational parameters, and the sum over k extends over
the whole Brillouin zone. The Gutzwiller projectors
P̂ (fαdβ), where α and β denote the f - and d-electron
numbers respectively, act on the on-site electron config-
urations defined by their arguments, making that config-
uration less probable. For example:

P̂ (f2) =
∏

g

[

1−
(

1− η(f2)
)

n̂f
g↑n̂

f
g↓

]

(17)

is the standard Gutzwiller-projector for two f -electrons
on the same site. The other ones take into account cor-
relations between d- and f -electrons, for example:

P̂ (f1d2) =
∏

g

{

1−
(

1− η(f1d2)
)

[

n̂f
g↑

(

1− n̂f
g↓

)

+ n̂f
g↓

(

1− n̂f
g↑

)]

n̂d
g↑n̂

d
g↓

}

, (18)

P̂ (f2d2) =
∏

g

{

1−
(

1− η(f2d2)
)

n̂f
g↑n̂

f
g↓n̂

d
g↑n̂

d
g↓

}

.

(19)

The remaining projectors are defined straightforwardly.
Besides the mixing amplitudes, we have five variational
parameters, η(f2d2), η(f2d1), η(f1d2), η(f1d1), η(f2),
controlled by Udf and Uf . The tedious procedure of
optimization is omitted here. Performing the optimiza-
tion with respect to the mixing amplitudes using the
Gutzwiller approximation we obtain

E =
1

N

∑

k

[

qdεd(k) + ε̃f −
√

[

qdεd(k)− ε̃f
]2

+ 4Ṽ 2

]

+(εf − ε̃f )nf + Ufν(f
2)

+Udf

[

4ν(f2d2) + 2
(

ν(f2d1) + ν(f1d2)
)

+ ν(f1d1)
]

(20)

for the ground-state energy density, where ν(f2) is the
density of doubly occupied f -sites. The other ν(fαdβ)
quantities denote the corresponding densities of the fαdβ

configurations, e.g.:

ν(f1d2) =
1

N

〈[

n̂f
g↑

(

1− n̂f
g↓

)

+ n̂f
g↓

(

1− n̂f
g↑

)]

n̂d
g↑n̂

d
g↓

〉

,

ν(f2d2) =
1

N

〈

n̂f
g↑n̂

f
g↓n̂

d
g↑n̂

d
g↓

〉

. (21)

Ṽ = V
√
qfqd is the renormalized hybridization, qf and

qd are the kinetic energy renormalization factors for the
f - and d-electrons, respectively. Their analytic forms
are now much longer than in our previous paper,22 and
after a tedious algebra we arrive at the following complete
square forms:
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qf =
1

(nf/2)(1− (nf/2))

(

√

ν(f2d2)ν(f1d2) + 2
√

ν(f2d1)ν(f1d1) +
√

ν(f2d0)ν(f1d0)+

√

ν(f1d2)ν(f0d2) + 2
√

ν(f1d1)ν(f0d1) +
√

ν(f1d0)ν(f0d0)
)2

, (22)

qd =
1

((n/2)− (nf/2))(1− (n/2 + nf/2))

(

√

ν(f2d2)ν(f2d1) + 2
√

ν(f1d2)ν(f1d1)+

√

ν(f0d2)ν(f0d1) +
√

ν(f2d1)ν(f2d0) + 2
√

ν(f1d1)ν(f1d0) +
√

ν(f0d1)ν(f0d0)
)2

, (23)

where n is the band filling, which is 2 in our case. It is re-
markable that the renormalized hybridization can still be
written as the square root of qf and qd in the presence of
Udf , too. Furthermore, ε̃f , the quasiparticle energy level
of f -electrons, has the same form as in [Ref. 22]. It pro-
vides a self-consistency equation for nf . The summation
over k in Eq. (20) is carried out with a constant density
of states, ρ(ε) = 1/W , in the interval ε ∈ [−W/2,W/2].
During the optimization process, the η(fαdβ) variational
parameters are expressed as functions of the quantities
ν(fαdβ), therefore the actual optimization can be done
with respect to these parameters. All in all, the en-
ergy density given in (20) has to be optimized for nf

and ν(f2), ν(f2d1), ν(f2d2), ν(f1d1), ν(f1d2), the other
quantities appearing in Eqs. (22)-(23) can be expressed
using these due to the conservation of the number of par-
ticles. The evaluation of the variational equations could
be done only numerically.
We first address what happens in the mixed-valence

regime. As Udf is switched on, the mixed-valence regimes
tend to be sharper and sharper. This can be character-
ized by the valence susceptibility defined in Eq. (14) and
displayed in Fig. 3 for different values of Udf . Note that
in the half-filled case, this function is symmetric to the
point εf = −Uf/2, therefore it is sufficient to investi-
gate the critical behavior in the regime 0 < nf < 1.
In what follows, we focus on this regime, if not men-
tioned otherwise. It is found, in agreement with other
calculations,16,19 that χV diverges for a certain value of
U c
df and two values of εcf related by the symmetry with

respect to −Uf/2. These two points are identified as the
QCPs. Following the maximum values of χV , the posi-
tion of the QCP can be determined. We found that χV

diverges as

χV |εf=εc
f
∼ 1

|Udf − U c
df |

, (24)

χV |Udf=Uc

df
∼ 1

|εf − εcf |
. (25)

This power-law behavior is valid for every choice of the
parameters we used in our calculations, indicating uni-
versality.
Our Gutzwiller calculation makes it possible to inves-

tigate how the position of the QCP depends on Uf and

χ
V

0

2

4

6

8

10

12

εf/W

-4 -3 -2 -1 0 1

FIG. 3: The valence susceptibility as a function of the f -level
energy for Uf/W = 3 and V/W = 0.1. The solid, dashed and
dotted lines correspond to Udf/W = 0; 0.3 and 0.4, respec-
tively.

V . In Fig. 4 the critical U c
df and εcf (for the QCP in

the 0 < nf < 1 regime) are shown as a function of Uf

for a fixed V . We found that (i) even for Uf = 0 there
exists a critical point; (ii) U c

df and εcf vary monotonically

as Uf increases; (iii) both of them saturate as Uf reaches
the value above which there exists a stable Kondo regime
(see Fig. 3 in [Ref. 22]). On the contrary their dependence
on V is remarkable. These values are shown in Fig. 5.
Firstly, we mention, that for V/W → 0, U c

df tends to

a nonzero value (U c
df/W ≈ 0.17), which indicates that

there has to be a finite value of Udf even for weak hy-
bridizations to obtain a valence transition. The critical
position of the f -level decreases linearly with increasing
hybridization. The critical value of the occupancy of the
f -level increases from nc

f = 0 at V = 0 and saturates as
soon as εcf reaches the bottom of the conduction band.
Roughly at the same mixing V , the slope of the U c

df − V
curve shows a substantial change.

For larger values of Udf , two subsequent first-order
transitions—from nf ≈ 2 to nf ≈ 1 (Kondo regime) and
from nf ≈ 1 to nf ≈ 0—take place as εf is varied. Their
positions are symmetric with respect to −Uf/2. This is
confirmed by the fact that near the transition a hysteresis
is observed, that is, there is a narrow range of εf , where
two solutions of the variational equations coexist. There-
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εc f
/W

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Uf/W

0 0.2 0.4 0.6 0.8 1

(b)

U
c df
/W

0

0.1

0.2

0.3

0.4

0.5

Uf/W

0 0.2 0.4 0.6 0.8 1

(a)

FIG. 4: Panel (a) shows the critical value of Udf where the
QCP appears as a function of Uf . Panel (b) shows the critical
value of εf , V/W = 0.1 in all cases.

fore the transition line is identified from the ground-state
energy, where the energies of the different configurations
are equal.

For even larger values of Udf , the width of Kondo

regime decreases and at U triple
df it ends in a triple point.

At the triple point, the energy of the Kondo-like state be-
comes equal to the energy of the states with nf ≈ 2 and
nf ≈ 0, therefore here three different states coexist. We

found that the triple point is located at εtriplef = −Uf/2

and U triple
df ≈ Uf/2 + W/4, if there is a Kondo plateau.

For small Uf (including Uf = 0), when there is no
Kondo plateau, the numerical results can be fitted to

U triple
df ≈ Uf/2 +W/3. In [Ref. 16] using DMFT it was

found that the Kondo regime is stable for Udf . Uf/2.
Our result is in agreement with this. The mean-field
theory gives similar results except for Uf = 0, where the
triple point does not exist. Now we can draw the εf−Udf

phase diagram. The results are shown in Fig. 6, using a
color code, for two different values of the hybridization
and demonstrates our statements described above. The
figure demonstrates that the interval of εf , where first-
order transition occurs, is shortened for larger values of
the hybridization.
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FIG. 5: (Color online) Panel (a) shows the critical value of Udf

(•) where the QCP appears as a function of the hybridization.
The red dotted and blue dashed lines are linear fits to the
beginning and to the end of the data respectively. Panel (b)
and (c) show the critical values of εf and nf respectively,
Uf/W = 3 in all cases.

IV. COMPARISON WITH THE MEAN-FIELD

APPROACH AND EXACT DIAGONALIZATION

The mean-field theory and the Gutzwiller approach
yield surprisingly close results for Udf/W = 0 and 1,
which is shown in Fig. 7 for a special choice of the param-
eters. However, the mean-field results show a jump in the
f -level occupancy at such small values of Udf , where the
Gutzwiller method still gives a continuous change of nf .
The estimated critical value (U c

df ) from mean-field the-
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FIG. 6: (Color online) The upper panel shows the εf − Udf

phase diagram for Uf/W = 3 and V/W = 0.1, while the
lower one for Uf/W = 3 and V/W = 0.2. The solid white
lines denote the first-order transition lines. The QCPs are
marked by red squares. The point where the white lines meet
is the triple point (see the text).

ory is significantly smaller than that from the Gutzwiller
method. It is worth emphasizing that the jump in the
mean-field results is due to a level crossing between a
paramagnetic and a magnetically ordered state. In con-
trast, the Gutzwiller method gives a valence transition
between paramagnetic states. Both methods result in a
triple point for a certain value of Udf , and we found that

both of them gives U triple
df ≈ Uf/2 +W/4. For small val-

ues of Uf the scenario is the same in both methods as in

the large Uf case, however, the values of U triple
df and U c

df

are somewhat different. The only exception is Uf = 0,
where there is no triple point in the mean-field calcu-
lation due to the missing of a stable magnetic solution.
Here a direct first-order transition takes place between
the nearly fully occupied and nearly empty f -levels.

As a further check of our results, we performed exact
diagonalization on a one-dimensional chain. Due to the
limitation to relatively short chains containing six sites,

n
f

0

0.5

1

1.5

2

εf/W
-4 -3 -2 -1 0 1

FIG. 7: The f -level occupancy as a function of εf . The black
curves are obtained from the Gutzwiller method, while the
gray ones are calculated from exact diagonalization and the
symbols are the results of the mean-field calculation. The
solid, dashed and dotted lines (and the symbols •, N, �)
belong to Udf/W = 0; 0.4; 1 respectively, V/W = 0.1 and
Uf/W = 3 in all cases.

we do not expect to find critical behavior in this calcu-
lation. However, some other features of the effect of Udf

might be observable. The comparison is shown in Fig.
7. The width of the Kondo plateau is the same using all
the three methods, therefore its shrinking due to Udf is
not an artifact of the Gutzwiller approximation or the
mean-field treatment. Furthermore, by increasing Udf ,
the intermediate valence regime becomes narrower in the
exact diagonalization, too, although there is naturally no
sharp valence transition.

V. CONCLUSIONS

We have performed mean-field calculation, variational
calculation using the Gutzwiller method, and exact diag-
onalization for the extended PAM, where an additional
local Coulomb interaction between the d- and f -electrons
has been included. Earlier calculations found a sharp,
first-order valence transition and a critical point at some
value of Udf for large or infinite Uf couplings. We have
generalized the Gutzwiller method for arbitrary Uf in or-
der to study the small Uf regime and to analyze how the
QCP depend on Uf and V .
Both the mean-field theory and the Gutzwiller method

have resulted in two subsequent first-order valence tran-
sitions as the position of the f -level is varied above a crit-
ical value of Udf , and two QCPs appear in the εf − Udf

plane. We have analyzed variationally the critical behav-
ior as a function of hybridization, the bare f -level energy,
and Uf , and have drawn the εf − Udf phase diagram. It
has been pointed out that the Kondo regime shrinks by
increasing Udf , and ends in a triple point, which obvi-
ously cannot be seen in the infinite Uf case. For even
larger values of Udf a direct first-order valence transi-
tion takes place from nf ≈ 2 to nf ≈ 0. This can be
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interpreted as valence skipping, which so far has been
attributed to the presence of a negative Uf . We find it
for Uf > 0, when Udf is large enough. The shrinking of
the Kondo regime and the narrowing of the intermediate
valence regime have been confirmed by exact diagonal-
ization, although naturally, no sharp valence transition
is found in finite chains.
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