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Abstract

Two very different methods – exact diagonalization on finite chains and a variational method –

are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic

Anderson-Hubbard model. With this aim we calculate the density of doubly occupied d sites (νd)

as a function of various parameters. In the absence of on-site Coulomb interaction (Uf ) between f

electrons, the two methods yield similar results. The double occupancy of d levels remains always

finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives

the same result for finite Uf , while the Gutzwiller method leads to a Brinkman-Rice transition at

a critical value (U c
d), which depends on Uf and V .
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I. INTRODUCTION

The periodic Anderson-Hubbard model defined by the Hamiltonian

H =
∑

k,σ

εd(k)d̂
†
k,σd̂k,σ + Ud

∑

j

n̂d
j↑n̂

d
j↓ + εf

∑

j,σ

n̂f
j,σ + Uf

∑

j

n̂f
j↑n̂

f
j↓

−V
∑

j,σ

(

f̂ †
j,σd̂j,σ + d̂†j,σf̂j,σ

)

(1)

is meant to describe the physics of systems in which two types of electrons, one filling a

relatively broad conduction band, the other a narrow band, are allowed to hybridize. In

what follows we call them d and f electrons. The interactions within the bands are denoted

by Ud and Uf , respectively. In the present work we restrict ourselves to the half-filled

paramagnetic case, that is, when there are N↑ = N↓ = N up- and down-spin electrons in an

arbitrary dimensional lattice with N lattice sites, each of which has one d and one f orbital.

Moreover, we restrict ourselves to the symmetric case, where an equal number of d and f

electrons is present on the average. This is realized when εf = (Ud − Uf )/2, if the energy is

measured from the center of the d band [1].

In our previous study of this model [1], in which we used two very different methods: a

variational calculation using the Gutzwiller type wave function and exact diagonalization,

we were mainly interested in the effect of the on-site interaction Ud between conduction

electrons on the f -electron physics. In the present study we examine the effect of d-f

hybridization (V ) and of the interaction Uf between f electrons on the Hubbard physics,

that is on the eventual metal-insulator transition at half filling.

In the Gutzwiller-type treatment of the half-filled Hubbard model, the metal-insulator

transition, which is known in this case as the Brinkman-Rice transition [2], occurs at a finite

Ud, where the number of doubly occupied d sites becomes zero. A similar transition was

obtained by the Gutzwiller method in the half-filled periodic Anderson-Hubbard model, too

[1], when the f electrons in the narrow band are strongly correlated.

In contrast to that, exact diagonalization of the half-filled periodic Anderson-Hubbard

model on finite chains gave a finite number of doubly occupied d sites for any Ud, just as in

the one-dimensional half-filled Hubbard model, where this number is finite for arbitrary Ud

[3], even though the ground state is conducting only for Ud = 0 and insulating for Ud > 0.

In this paper we will consider the half-filled symmetric Anderson-Hubbard model in

the paramagnetic regime in the full Ud ≥ 0, Uf ≥ 0 sector, when it is not necessarily
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in the strongly correlated Kondo region, and will study the possibility of metal-insulator

transition. We should note here that in the present model a “metallic” phase is in fact a

band insulator with hybridization gap. Therefore, we should be speaking about insulator-

insulator transition, though its physics is the same as a metal-insulator transition due to

the interactions between electrons. We calculate the number of doubly occupied d sites as a

function of Ud for various values of V and Uf by both methods at the symmetric Anderson

point, where the average number of f and d electrons per site (denoted by nf and nd,

respectively) is exactly 1, and examine the effects of these couplings on the one- and higher

dimensional Hubbard physics.

II. CALCULATION BY EXACT DIAGONALIZATION

First, we perform exact diagonalization of the model on finite chains, where the kinetic

energy of conduction electrons moving along the chain is described by hopping between

nearest-neighbor d orbitals with hopping rate t.

We consider the periodic Anderson-Hubbard model on a chain consisting of six sites with

periodic boundary conditions. The results are shown in Figs. 1 and 2, where the density

of doubly occupied d sites, νd, is shown as a function of Ud for V = 0.1W and 0.3W ,

respectively (W = 4t is the bandwidth), and for Uf = 0 and 5W . The values calculated

with the Bethe Ansatz for the pure Hubbard model are also shown in the figure by a solid

line.

One can see that when the conduction electrons of the d band are hybridized with non-

interacting electrons in the f band (Uf = 0), the larger the hybridization the more the

number of doubly occupied sites. The curves are reasonably close to the results obtained

by the Gutzwiller method. The agreement gets better for stronger hybridization, while for

weak hybridization it holds for small Ud values only.

The values of νd decrease for finite Uf and get close to those of the pure Hubbard model

for large Uf . This suggests that the d-electron subsystem becomes decoupled from the f

electrons when the f electrons are strongly correlated.

The results in this section are valid for a chain, for a one-dimensional model. In the next

section we discuss a variational method, which might be relevant for higher dimensional

models.
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Fig. 1. νd as a function of Ud for V = 0.1W . The empty and filled circles indicate the results

of exact diagonalization for Uf/W = 0 and 5, respectively. The dashed line is the result of the

Gutzwiller method for Uf/W = 0. The solid line is the exact solution of the one dimensional

Hubbard-model.
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Fig. 2. The same as Fig. 1 except that V = 0.3W .

III. VARIATIONAL CALCULATION

We summarize the main steps of the variational calculation following Ref. [4]. The trial

wave function is chosen in the form

|Ψ〉 = P̂ d
G
P̂ f
G

∏

k

∏

σ

[

ukf̂
†
kσ + vkd̂

†
kσ

]

|0〉, (2)
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where the Gutzwiller projectors, P̂ d
G
and P̂ f

G
, which contain the variational parameters ηd

and ηf , are written as

P̂ d
G =

∏

j

[

1− (1− ηd)n̂
d
j↑n̂

d
j↓

]

, (3)

P̂ f
G
=

∏

j

[

1− (1− ηf)n̂
f
j↑n̂

f
j↓

]

. (4)

The variational parameters, ηd and ηf , depend on Ud and Uf , respectively. Performing the

optimization with respect to the mixing amplitudes, uk and vk, we get

E =
1

N

∑

k∈FS

[

qdεd(k) + ε̃f −
√

[

qdεd(k)− ε̃f
]2

+ 4Ṽ 2

]

+ (εf − ε̃f)nf + Udνd + Ufνf

(5)

for the ground-state energy density, where qd denotes the kinetic energy renormalization

factor of d electrons given by

qd =
1

(

1− nd

2

)

nd

2

[

√

(nd

2
− νd

)

νd +

√

(nd

2
− νd

)

(1− nd + νd)

]2

, (6)

which is formally identical to the expression found in the Hubbard model [5]. The renor-

malized hybridization amplitude is now Ṽ = V
√
qdqf ; the other notations are the same as

in our previous paper [4], and the self-consistency condition is given by

nf =
1

N

∑

k∈FS



1 +
qdεd(k)− ε̃f

√

[

qdεd(k)− ε̃f
]2

+ 4Ṽ 2



 = 1. (7)

The summation over k can be carried out assuming a constant density of states, ρ(ε) = 1/W ,

in the interval ε ∈ [−W/2,W/2]. The values of νf , and νd are obtained by optimizing the

energy density with respect to these parameters numerically. For V ≪ W and nd = nf =

1 the optimization condition with respect to νd and νf results in the following coupled

equations:

Ud

W
−
[

1

4
+ 2

(

V

W

)2
qf
qd

]

8(1− 4νd) = 0, (8)

Uf

W
+ 2

(

V

W

)2

ln

[

4
qf
qd

(

V

W

)2
]

8(1− 4νf ) = 0. (9)

When either of Ud or Uf is zero, the equations are decoupled. Note that in the absence of

hybridization Eq. (8) reduces to the result for the ordinary Hubbard model.
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We now turn to the discussion of the d-electron subsystem. We calculate the density of

doubly occupied d sites, νd, as a function of Ud. The results are displayed in Fig. 3 for

several values of Uf for a relatively weak hybridization, V = 0.1W , and in Fig. 4 for a

stronger hybridization.
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Fig. 3. νd as a function of Ud. The solid, dashed, dotted and dot-dashed lines correspond to

Uf/W = 0, 0.3, 0.5, 5 respectively. V = 0.1W in all cases.
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Fig. 4. νd as a function of Ud. The solid, dashed and dotted lines correspond to Uf/W = 0, 1, 10

respectively. V = 0.3W in all cases.

First, we find that for Uf = 0, νd never becomes zero, just as it was obtained by the exact

diagonalization for a finite chain, that is, the Brinkman-Rice transition does not occur. We
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can calculate the asymptotic behavior of νd for large value of Ud from the following analysis.

When Uf = 0, qf = 1 irrespective of Ud, and Eq. (8) can be solved for νd. For Ud ≫ W in

leading order we arrive at:

νd ∝
2V 2

Ud

. (10)

Second, we find that the Gutzwiller method leads to a Brinkman-Rice transition for any

Uf > 0, that is, there exists a finite value, U c
d , where νd becomes zero. For Ud > 0 and Uf > 0

the optimization conditions, Eqs. (8) and (9) for νf and νd are coupled, and thus both νd

and νf decrease when either of the interactions increases. Therefore, even for very small Uf ,

when Ud is large enough, νf also becomes small, and finally both νd and νf simultaneously

become zero at U c
d . As a matter of fact, Ud and Uf play a rather similar role. If we fix Ud

at a certain value larger than 2W , a Brinkman-Rice transition occurs at a certain U c
f . The

difference in the condition (Ud > 2W and Uf > 0) necessary for occurrence of a transition

is due to the different widths of the d and f bands (W and 0, respectively) in the present

model.

Third, when Uf is large enough and νf is exponentially small even for small Ud, that is,

when the system is the Kondo regime, the νd−Ud curves become straight lines and coincide

to the known behavior of the Hubbard-model. In the limit Uf ≫ W we obtain:

νd =
1

4
− Ud

8(W + 4EK)
, (11)

where

EK =
W

2
exp

{

− Uf

16V 2/W

}

. (12)

The scenario is the same for weak or strong hybridizations.

The results described above indicate that a phase boundary can be defined in the three-

dimensional parameter space of Ud, Uf and V , which separates the region where νd = νf = 0

from that where both νd and νf are finite. The former is a Mott insulator region and the

latter is a hybridized band insulator region (for small Uf) or a Kondo insulator region (for

large Uf). The phase boundaries in the Ud–Uf plain are shown in Fig. 5. (About the

boundary between a hybridized band insulator and a Kondo one, see Ref. [1].)

IV. CONCLUSIONS
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Fig. 5. The phase boundaries in the Ud–Uf plain separating the metallic and insulating regimes.

The solid and dashed lines correspond to V = 0.1W and 0.3W , respectively.

In this paper we discussed the periodic Anderson-Hubbard model focusing our attention

on the physics of the conduction electron subsystem, using two different methods: exact

diagonalization on finite chains and a variational method of the Gutzwiller-type. We studied

the effects of the d-f hybridization (V ) and of the on-site interaction between f electrons

(Uf ) on the number of doubly occupied d sites, νd. When Uf = 0, both methods gave similar

results. For larger Uf , however, the results of exact diagonalization in the one-dimensional

model showed that νd approaches that obtained from the Bethe-Ansatz solution of the pure

Hubbard model, while the Gutzwiller method indicates a Brinkman-Rice-type scenario for

a metal-insulator transition.

It is interesting from theoretical point of view that νd ∝ 1/U2

d according to the Bethe-

Ansatz solution for Ud ≫ W , while the Gutzwiller method gives a slower asymptotic behav-

ior, νd ∝ 1/Ud for Uf = 0.
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