200 research outputs found

    The evaluation of shear deformation for contact analysis with large displacement

    Get PDF
    A common problem encountered in the study of contact problem is the failure to obtain stable and accurate convergence result when the contact node is close to the element edge, which is referred as "critical area". In previous studies, the modification of the element force equation to apply it to a node-element contact problem using the Euler-Bernoulli beam theory [1]. A simple single-element consists two edges and a contact point was used to simulate contact phenomenon of a plane frame. The modification was proven to be effective by the convergeability of the unbalanced force at the tip of element edge, which enabled the contact node to "pass-through", resulting in precise results. However, in another recent study, we discover that, if shear deformation based on Timoshenko beam theory is taken into consideration, a basic simply supported beam coordinate afforded a much simpler and more efficient technique for avoiding the divergence of the unbalanced force in the "critical area". Using our unique and robust Tangent Stiffness Method, the improved equation can be used to overcome any geometrically nonlinear analyses, including those involving extremely large displacements

    Realistic description of electron-energy loss spectroscopy for One-Dimensional Sr2_2CuO3_3

    Full text link
    We investigate the electron-energy loss spectrum of one-dimensional undoped CuO3_{3} chains within an extended multi-band Hubbard model and an extended one-band Hubbard model, using the standard Lanczos algorithm. Short-range intersite Coulomb interactions are explicitly included in these models, and long-range interactions are treated in random-phase approximation. The results for the multi-band model with standard parameter values agree very well with experimental spectra of Sr2_{2}CuO3_{3}. In particular, the width of the main structure is correctly reproduced for all values of momentum transfer. It is shown for both models that intersite Coulomb interactions mainly lead to an energy shift of the spectra. We find no evidence for enhanced intersite interactions in Sr2_{2}CuO3_{3}.Comment: 4 pages, 4 figure

    Electronic and Magnetic Properties of Partially-Open Carbon Nanotubes

    Full text link
    On the basis of the spin-polarized density functional theory calculations, we demonstrate that partially-open carbon nanotubes (CNTs) observed in recent experiments have rich electronic and magnetic properties which depend on the degree of the opening. A partially-open armchair CNT is converted from a metal to a semiconductor, and then to a spin-polarized semiconductor by increasing the length of the opening on the wall. Spin-polarized states become increasingly more stable than nonmagnetic states as the length of the opening is further increased. In addition, external electric fields or chemical modifications are usable to control the electronic and magnetic properties of the system. We show that half-metallicity may be achieved and the spin current may be controlled by external electric fields or by asymmetric functionalization of the edges of the opening. Our findings suggest that partially-open CNTs may offer unique opportunities for the future development of nanoscale electronics and spintronics.Comment: 6 figures, to appear in J. Am. Chem. So

    Preliminary solid waste management (SWM) data survey and assessment of town, treatment site and disposal site conditions; case study southern province of Sri Lanka

    Get PDF
    In case of southern province of Sri Lanka, Solid Waste Management (SWM) can be an aggravated problem in future with respect to the present development activities in the area. To find a sustainable solution for this problem is very important to aware about present situation of SWM in the province. But there is no SWM data survey has been carried out in the province recently. Therefore under this research work a preliminary SWM data survey has been conducted in all 49 Local Authorities (LA) in Southern province. Research work was basically carried out at LA level since LA is the responsible administration body for solid waste management within its territory. Further town condition, waste treatment and disposal site conditions of each local authority were visited and assessed according to an accepted assessment criteria. Total daily waste collection in the province is 231.65 tons and it is only a 20% of total daily waste generation in the province. Composting is the most adopted waste treatment method in the province as 19 LAs out of 49 have already established composting facilities. Waste disposal is the major problem for most of the LAs as it contributes to create many socio-environmental issues. When consider waste disposal methods in southern province, 29 LAs have adopted open dumping while other LAs are burying. According to the assessment it was found that SWM in 96 percent of LAs is not up the acceptable level. The findings and results of the study have been presented in this research paper in detail

    Femtosecond Dynamics in Single Wall Carbon Nanotube/Poly(3-Hexylthiophene) Composites

    Get PDF
    Femtosecond transient absorption measurements on single wall carbon nanotube/poly(3-hexylthiophene) composites are used to investigate the relaxation dynamics of this blended material. The influence of the addition of nanotubes in polymer matrix on the ultrashort relaxation dynamics is examined in detail. The introduction of nanotube/polymer heterojunctions enhances the exciton dissociation and quenches the radiative recombination of composites. The relaxation dynamics of these composites are compared with the fullerene derivative-polymer composites with the same matrix. These results provide explanation to the observed photovoltaic performance of two types of composites

    Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements

    Get PDF
    This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005±0.001∕m (where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412nm, respectively. While searching for sources of differences among different instruments, it was found that all individual differences linked to Rayleigh, NO2, ozone, water vapor calculations and related optical depths and air mass calculations were smaller than 0.01 in aerosol optical depth (AOD) at 500 and 865nm. Different cloud-detecting algorithms used have been compared. Ångström exponent calculations showed relatively large differences among different instruments, partly because of the high calculation uncertainty of this parameter in low AOD conditions. The overall low deviations of these AOD results and the high accuracy of reference aerosol network instruments demonstrated a promising framework to achieve homogeneity, compatibility and harmonization among the different spectral AOD networks in the near future

    Estimation of the Emissions of CO 2

    No full text
    • …
    corecore