1,885 research outputs found
The Relationship Between Middle Managers’ Self-Determination and Lean Implementation in Manufacturing
Although middle managers’ commitment to lean implementation affects successful improvement outcomes in the United States, most senior leaders in manufacturing attempting to implement lean in the United States fail to achieve expected improvement outcomes. Grounded in the self-determination theory of motivation, the purpose of this quantitative correlational study was to examine the relationship between middle managers’ competence, relatedness, autonomy, and level of lean implementation. Participants were 77 midlevel managers in manufacturing organizations in the midwestern United States. Data were collected using the Basic Psychological Need Satisfaction at Work Scale. The results of the multiple regression analysis indicated the model could statistically significantly predict the level of lean implementation, F(3, 73) = 4.521, p \u3c .01, R2 = .157. Relatedness was the only significant predictor (p = .043, beta = .270). A key recommendation for senior manufacturing leaders is to foster an environment where employees fully internalize tasks and feel that their assignments are consistent with their core beliefs. The implications for positive social change include the potential for middle managers to improve work-life balance, job satisfaction, emotional health for manufacturing employees, and job sustainability within their communities
Cohomogeneity one manifolds and selfmaps of nontrivial degree
We construct natural selfmaps of compact cohomgeneity one manifolds with
finite Weyl group and compute their degrees and Lefschetz numbers. On manifolds
with simple cohomology rings this yields in certain cases relations between the
order of the Weyl group and the Euler characteristic of a principal orbit. We
apply our construction to the compact Lie group SU(3) where we extend identity
and transposition to an infinite family of selfmaps of every odd degree. The
compositions of these selfmaps with the power maps realize all possible degrees
of selfmaps of SU(3).Comment: v2, v3: minor improvement
On the singularity formation and relaxation to equilibrium in 1D Fokker–Planck model with superlinear drift
We consider a class of Fokker–Planck equations with linear diffusion and superlinear drift enjoying a formal Wasserstein-like gradient flow structure with convex mobility function. In the drift-dominant regime, the equations have a finite critical mass above which the measure minimising the associated entropy functional displays a singular component. Our approach, which addresses the one-dimensional case, is based on a reformulation of the problem in terms of the pseudo-inverse distribution function. Motivated by the structure of the equation in the new variables, we establish a general framework for global-in-time existence, uniqueness and regularity of monotonic viscosity solutions to a class of nonlinear degenerate (resp. singular) parabolic equations, using as a key tool comparison principles and maximum arguments. We then focus on a specific equation and study in more detail the regularity and dynamics of solutions. In particular, blow-up behaviour, formation of condensates (i.e. Dirac measures at zero) and long-time asymptotics are investigated. As a consequence, in the mass-supercritical case, solutions will blow up in L∞ in finite time and—understood in a generalised, measure sense—they will eventually have condensate. We further show that the singular part of the measure solution does in general interact with the density and that condensates can be transient. The equations considered are motivated by a model for bosons introduced by Kaniadakis and Quarati (1994), which has a similar entropy structure and a critical mass if d ≥ 3
Advancing Workplace Diversity Through the Culturally Responsive Teamwork Framework.
Purpose Diversification of the profession is an important element of combating racism, bias, and prejudice in the speech-language pathology workforce at national and systemic levels. However, national and systemic change needs to be combined with equipping individual speech-language pathologists to adapt to the challenges that they face to engaging in culturally responsive practice. This paper presents four interacting levels of practice within the Culturally Responsive Teamwork Framework (CRTF): (a) intrapersonal practices, (b) interpersonal practices, (c) intraprofessional practices, and (d) the interprofessional practices. Conclusion CRTF is a practical, strengths-based framework that draws on international research and expertise to expand personal and professional practice and describe critical behaviors within the workplace that can be used to promote principles of evidence-based practice and social justice, especially when working with people from nondominant cultural or linguistic groups
Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors.
Insect odorant receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection
Retinal thinning in phenylketonuria and Gaucher disease type 3
Purpose
Retinal alterations in inherited metabolic diseases associated with neurodegeneration are poorly studied. The objective was to study retinal thickness, specifically the components of the ganglion cell complex (GCC)—nerve fiber layer (NFL), ganglion cell layer (GCL), and inner plexiform layer (IPL)—using spectral-domain optical coherence tomography (SD-OCT) in two different diseases with potential dopaminergic depletion, phenylketonuria (PKU) and Gaucher disease type 3 (GD3).
Methods
Retinal layers in 19 patients with PKU, 15 patients with GD3, and 93 healthy individuals were measured using peripapillary ring scan and macular SD-OCT. Linear mixed models were computed including an adjustment for age, sex, and spherical equivalent. We calculated Spearman’s rank correlations between retinal layer measurements and clinical and/or laboratory parameters.
Results
Thinning of total retinal thickness was found in the macular inner ring (p = 0.002), and outer ring (p = 0.012), sparing the fovea (p = 0.12) in PKU, while in GD3, all subfields were thinned (fovea p < 0.001, inner ring p = 0.047, outer ring 0.07). In both conditions, thinning was most evident in the NFL, GCL, and IPL, while OPL (outer plexiform layer) was thickened. Peripapillary retinal nerve fiber layer measurements remained normal. GCL and IPL in PKU correlated with tyrosine serum concentration.
Conclusion
Thinning of the NFL, GCL, and IPL, with thickened OPL, are both found in PKU and in GD3. Low dopamine concentrations in the retina might promote these effects. However, these data do not give evidence that retinal measurements can be used as a biomarker for disease severity in patients with GD3
Neural mechanisms of surround attenuation and distractor competition in visual search
Visual attention biases relevant processing in the visual system by amplifying relevant or attenuating irrelevant sensory input. A potential signature of the latter operation, referred to as surround attenuation, has recently been identified in the electromagnetic brain response of human observers performing visual search. It was found that a zone of attenuated cortical excitability surrounds the target when the search required increased spatial resolution for item discrimination. Here we address the obvious hypothesis that surround attenuation serves distractor suppression in the vicinity of the target where interference from irrelevant search items is maximal. To test this hypothesis, surround attenuation was assessed under conditions when the target was presented in isolation versus when it was surrounded by distractors. Surprisingly, substantial and indistinguishable surround attenuation was seen under both conditions, indicating that it reflects an attentional operation independent of the presence of distractors. Adding distractors in the target's surround, however, increased the amplitude of the N2pc-an evoked response known to index distractor competition in visual search. Moreover, adding distractors led to a topographical change of source activity underlying the N2pc toward earlier extrastriate areas. In contrast, the topography of reduced source activity due to surround attenuation remained unaltered with and without distractors in the target's surround. We conclude that surround attenuation is not a direct consequence of the attenuation of distractors in visual search and that it dissociates from attentional operations reflected by the N2pc. A theoretical framework is proposed that links both operations in a common model of top-down attentional selection in visual cortex
Cutting the same fraction of several measures
We study some measure partition problems: Cut the same positive fraction of
measures in with a hyperplane or find a convex subset of
on which given measures have the same prescribed value. For
both problems positive answers are given under some additional assumptions.Comment: 7 pages 2 figure
Minimal surfaces and particles in 3-manifolds
We use minimal (or CMC) surfaces to describe 3-dimensional hyperbolic,
anti-de Sitter, de Sitter or Minkowski manifolds. We consider whether these
manifolds admit ``nice'' foliations and explicit metrics, and whether the space
of these metrics has a simple description in terms of Teichm\"uller theory. In
the hyperbolic settings both questions have positive answers for a certain
subset of the quasi-Fuchsian manifolds: those containing a closed surface with
principal curvatures at most 1. We show that this subset is parameterized by an
open domain of the cotangent bundle of Teichm\"uller space. These results are
extended to ``quasi-Fuchsian'' manifolds with conical singularities along
infinite lines, known in the physics literature as ``massive, spin-less
particles''.
Things work better for globally hyperbolic anti-de Sitter manifolds: the
parameterization by the cotangent of Teichm\"uller space works for all
manifolds. There is another description of this moduli space as the product two
copies of Teichm\"uller space due to Mess. Using the maximal surface
description, we propose a new parameterization by two copies of Teichm\"uller
space, alternative to that of Mess, and extend all the results to manifolds
with conical singularities along time-like lines. Similar results are obtained
for de Sitter or Minkowski manifolds.
Finally, for all four settings, we show that the symplectic form on the
moduli space of 3-manifolds that comes from parameterization by the cotangent
bundle of Teichm\"uller space is the same as the 3-dimensional gravity one.Comment: 53 pages, no figure. v2: typos corrected and refs adde
- …