1,101 research outputs found

    A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations

    Full text link
    In large scale cosmological hydrodynamic simulations simplified sub-grid models for gas accretion onto black holes and AGN feedback are commonly used. Such models typically depend on various free parameters, which are not well constrained. We present a new advanced model containing a more detailed description of AGN feedback, where those parameters reflect the results of recent observations. The model takes the dependency of these parameters on the black hole properties into account and describes a continuous transition between the feedback processes acting in the so-called radio-mode and quasar-mode. In addition, we implement a more detailed description of the accretion of gas onto black holes by distinguishing between hot and cold gas accretion. Our new implementations prevent black holes from gaining too much mass, particularly at low redshifts so that our simulations are now very successful in reproducing the observed present-day black hole mass function. Our new model also suppresses star formation in massive galaxies slightly more efficiently than many state-of-the-art models. Therefore, the simulations that include our new implementations produce a more realistic population of quiescent and star-forming galaxies compared to recent observations, even if some discrepancies remain. In addition, the baryon conversion efficiencies in our simulation are - except for the high mass end - consistent with observations presented in literature over the mass range resolved by our simulations. Finally, we discuss the significant impact of the feedback model on the low-luminous end of the AGN luminosity function.Comment: 25 pages, 19 figures. MNRAS accepted. Magneticum website: http://www.magneticum.or

    Origin and properties of dual and offset active galactic nuclei in a cosmological simulation at z=2

    Full text link
    In the last few years, it became possible to observationally resolve galaxies with two distinct nuclei in their centre. For separations smaller than 10kpc, dual and offset active galactic nuclei (AGN) are distinguished: in dual AGN, both nuclei are active, whereas in offset AGN only one nucleus is active. To study the origin of such AGN pairs, we employ a cosmological, hydrodynamic simulation with a large volume of (182Mpc)^3 from the set of Magneticum Pathfinder Simulations. The simulation self-consistently produces 35 resolved black hole (BH) pairs at redshift z=2, with a comoving distance smaller than 10kpc. 14 of them are offset AGN and nine are dual AGN, resulting in a fraction of (1.2 \pm 0.3)% AGN pairs with respect to the total number of AGN. In this paper, we discuss fundamental differences between the BH and galaxy properties of dual AGN, offset AGN and inactive BH pairs and investigate their different triggering mechanisms. We find that in dual AGN the BHs have similar masses and the corresponding BH from the less massive progenitor galaxy always accretes with a higher Eddington ratio. In contrast, in offset AGN the active BH is typically more massive than its non-active counterpart. Furthermore, dual AGN in general accrete more gas from the intergalactic medium than offset AGN and non-active BH pairs. This highlights that merger events, particularly minor mergers, do not necessarily lead to strong gas inflows and thus, do not always drive strong nuclear activity.Comment: 17 pages, 18 figures, accepted for publication in MNRAS, website: http://www.magneticum.or

    QualitÀtssicherung interdisziplinÀrer Polytraumaversorgung: Möglichkeiten und Grenzen retrospektiver Standarderfassung

    Get PDF
    Zusammenfassung: Hintergrund: Inwieweit kann die Auswertung standardmĂ€ĂŸig erhobener Patienten- und Krankenhausdaten einen Behandlungsvergleich mit anderen Erhebungen gestatten? Material und Methoden: Es wurde eine retrospektive Analyse epidemiologischer und klinisch-technischer Parameter aller Mehrfachverletzten [Injury Severity Score (ISS)>15] einer Zentrumsklinik (n=172; Zeitraum: 01.01.1997-31.12.1999) bezĂŒglich der Ablauforganisation und des Outcome (p74Jahre, Hypotension, initial verminderte HĂ€moglobin- und Quick-Werte, verminderte Glasgow Coma Scale (GCS) sowie Anzahl erhaltener Blutkonzentrate. Eine GegenĂŒberstellung der erhobenen Daten mit der zeitgleichen prospektiven Multizenterstudie der Deutschen Gesellschaft fĂŒr Unfallchirurgie (DGU) bestĂ€tigte die Ergebnisse bezĂŒglich des Ablaufs und des Outcome. Schlussfolgerung: Die interdisziplinĂ€re retrospektive Datenauswertung ist unter Fokussierung auf prognoserelevante und routinemĂ€ĂŸig erhobene Parameter eine praktikable sowie aussagefĂ€hige Alternative zu prospektiven Erfassungen und ermöglicht eine erste qualitative Standortbestimmun

    The Mouvement republicain populaire : its role and position in French politics in 1951.

    Get PDF
    n/

    Energy and Momentum Distributions of the Magnetic Solution to (2+1) Einstein-Maxwell Gravity

    Full text link
    We use Moeller's energy-momentum complex in order to explicitly evaluate the energy and momentum density distributions associated with the three-dimensional magnetic solution to the Einstein-Maxwell equations. The magnetic spacetime under consideration is a one-parametric solution describing the distribution of a radial magnetic field in a three-dimensional AdS background, and representing the superposition of the magnetic field with a 2+1 Einstein static gravitational field.Comment: LaTex, 13 pages; v2 clarifying comments and references added, Conclusions improved, to appear in Mod. Phys. Lett.

    Simulating binary neutron stars: dynamics and gravitational waves

    Full text link
    We model two mergers of orbiting binary neutron stars, the first forming a black hole and the second a differentially rotating neutron star. We extract gravitational waveforms in the wave zone. Comparisons to a post-Newtonian analysis allow us to compute the orbital kinematics, including trajectories and orbital eccentricities. We verify our code by evolving single stars and extracting radial perturbative modes, which compare very well to results from perturbation theory. The Einstein equations are solved in a first order reduction of the generalized harmonic formulation, and the fluid equations are solved using a modified convex essentially non-oscillatory method. All calculations are done in three spatial dimensions without symmetry assumptions. We use the \had computational infrastructure for distributed adaptive mesh refinement.Comment: 14 pages, 16 figures. Added one figure from previous version; corrected typo

    Magnetically charged solutions via an analog of the electric-magnetic duality in (2+1)-dimensional gravity theories

    Get PDF
    We find an analog of the electric-magnetic duality, which is a Z2Z_2 transformation between magnetic and electric sectors of the static and rotationally symmetric solutions in a class of (2+1)-dimensional Einstein-Maxwell-Dilaton gravity theories. The theories in our consideration include, in particular, one parameter class of theories continuously connecting the Banados-Teitelboim-Zanelli (BTZ) gravity and the low energy string effective theory. When there is no U(1)U(1) charge, we have O(2)O(2) or O(1,1)O(1,1) symmetry, depending on a parameter that specifies each theory. Via the Z2Z_2 transformation, we obtain exact magnetically charged solutions from the known electrically charged solutions. We explain the relationship between the Z2Z_2 transformation and O(2,Z)O(2,Z) symmetry, and comment on the TT-duality of the string theory.Comment: 10 pages, RevTe

    Critical Collapse of the Massless Scalar Field in Axisymmetry

    Get PDF
    We present results from a numerical study of critical gravitational collapse of axisymmetric distributions of massless scalar field energy. We find threshold behavior that can be described by the spherically symmetric critical solution with axisymmetric perturbations. However, we see indications of a growing, non-spherical mode about the spherically symmetric critical solution. The effect of this instability is that the small asymmetry present in what would otherwise be a spherically symmetric self-similar solution grows. This growth continues until a bifurcation occurs and two distinct regions form on the axis, each resembling the spherically symmetric self-similar solution. The existence of a non-spherical unstable mode is in conflict with previous perturbative results, and we therefore discuss whether such a mode exists in the continuum limit, or whether we are instead seeing a marginally stable mode that is rendered unstable by numerical approximation.Comment: 11 pages, 8 figure

    Rough droplet model for spherical metal clusters

    Full text link
    We study the thermally activated oscillations, or capillary waves, of a neutral metal cluster within the liquid drop model. These deformations correspond to a surface roughness which we characterize by a single parameter Δ\Delta. We derive a simple analytic approximate expression determining Δ\Delta as a function of temperature and cluster size. We then estimate the induced effects on shell structure by means of a periodic orbit analysis and compare with recent data for shell energy of sodium clusters in the size range 50<N<25050 < N < 250. A small surface roughness Δ≃0.6\Delta\simeq 0.6 \AA~ is seen to give a reasonable account of the decrease of amplitude of the shell structure observed in experiment. Moreover -- contrary to usual Jahn-Teller type of deformations -- roughness correctly reproduces the shape of the shell energy in the domain of sizes considered in experiment.Comment: 20 pages, 4 figures, important modifications of the presentation, to appear in Phys. Rev.
    • 

    corecore