1,147 research outputs found

    Scaling in a SU(2)/Z_3 model of cosmic superstring networks

    Get PDF
    Motivated by recent developments in superstring theory in the cosmological context, we examine a field theory which contains string networks with 3-way junctions. We perform numerical simulations of this model, identify the length scales of the network that forms, and provide evidence that the length scales tend towards a scaling regime, growing in proportion to time. We infer that the presence of junctions does not in itself cause a superstring network to dominate the energy density of the early Universe.Comment: 12pp, 3 fig

    Charged Black Cosmic String

    Get PDF
    Global U(1) strings with cylindrical symmetry are studied in anti-de Sitter spacetime. According as the magnitude of negative cosmological constant, they form regular global cosmic strings, extremal black cosmic strings and charged black cosmic strings, but no curvature singularity is involved. The relationship between the topological charge of a neutral global string and the black hole charge is clarified by duality transformation. Physical relevance as straight string is briefly discussed.Comment: ll pages, LaTe

    Defect formation and local gauge invariance

    Get PDF
    We propose a new mechanism for formation of topological defects in a U(1) model with a local gauge symmetry. This mechanism leads to definite predictions, which are qualitatively different from those of the Kibble-Zurek mechanism of global theories. We confirm these predictions in numerical simulations, and they can also be tested in superconductor experiments. We believe that the mechanism generalizes to more complicated theories.Comment: REVTeX, 4 pages, 2 figures. The explicit form of the Hamiltonian and the equations of motion added. To appear in PRL (http://prl.aps.org/

    Transport of flexible chiral objects in a uniform shear flow

    Get PDF
    The transport of slightly deformable chiral objects in a uniform shear flow is investigated. Depending on the equilibrium configuration one finds up to four different asymptotic states that can be distinguished by a lateral drift velocity of their center of mass, a rotational motion about the center of mass and deformations of the object. These deformations influence the magnitudes of the principal axes of the second moment tensor of the considered object and also modify a scalar index characterizing its chirality. Moreover, the deformations induced by the shear flow are essential for the phenomenon of dynamical symmetry breaking: Objects that are achiral under equilibrium conditions may dynamically acquire chirality and consequently experience a drift in the lateral direction.Comment: 25 pages, 16 figure

    Statistical Properties of Strings

    Get PDF
    We investigate numerically the configurational statistics of strings. The algorithm models an ensemble of global U(1)U(1) cosmic strings, or equivalently vortices in superfluid 4^4He. We use a new method which avoids the specification of boundary conditions on the lattice. We therefore do not have the artificial distinction between short and long string loops or a `second phase' in the string network statistics associated with strings winding around a toroidal lattice. Our lattice is also tetrahedral, which avoids ambiguities associated with the cubic lattices of previous work. We find that the percentage of infinite string is somewhat lower than on cubic lattices, 63\% instead of 80\%. We also investigate the Hagedorn transition, at which infinite strings percolate, controlling the string density by rendering one of the equilibrium states more probable. We measure the percolation threshold, the critical exponent associated with the divergence of a suitably defined susceptibility of the string loops, and that associated with the divergence of the correlation length.Comment: 20 pages, 8 figures (uuencoded) appended, DAMTP-94-56, SUSX-TP-94-7

    Numerical simulations of string networks in the Abelian-Higgs model

    Get PDF
    We present the results of a field theory simulation of networks of strings in the Abelian Higgs model. Starting from a random initial configuration we show that the resulting vortex tangle approaches a self-similar regime in which the length density of lines of zeros of ϕ\phi reduces as t−2t^{-2}. We demonstrate that the network loses energy directly into scalar and gauge radiation. These results support a recent claim that particle production, and not gravitational radiation, is the dominant energy loss mechanism for cosmic strings. This means that cosmic strings in Grand Unified Theories are severely constrained by high energy cosmic ray fluxes: either they are ruled out, or an implausibly small fraction of their energy ends up in quarks and leptons.Comment: 4pp RevTeX, 3 eps figures, clarifications and new results included, to be published in Phys. Rev. Let

    Cosmic String Formation from Correlated Fields

    Get PDF
    We simulate the formation of cosmic strings at the zeros of a complex Gaussian field with a power spectrum P(k)∝knP(k) \propto k^n, specifically addressing the issue of the fraction of length in infinite strings. We make two improvements over previous simulations: we include a non-zero random background field in our box to simulate the effect of long-wavelength modes, and we examine the effects of smoothing the field on small scales. The inclusion of the background field significantly reduces the fraction of length in infinite strings for n<−2n < -2. Our results are consistent with the possibility that infinite strings disappear at some n=ncn = n_c in the range −3≀nc<−2.2-3 \le n_c < -2.2, although we cannot rule out nc=−3n_c = -3, in which case infinite strings would disappear only at the point where the mean string density goes to zero. We present an analytic argument which suggests the latter case. Smoothing on small scales eliminates closed loops on the order of the lattice cell size and leads to a ``lattice-free" estimate of the infinite string fraction. As expected, this fraction depends on the type of window function used for smoothing.Comment: 24 pages, latex, 10 figures, submitted to Phys Rev

    Bifurcations and Chaos in the Six-Dimensional Turbulence Model of Gledzer

    Full text link
    The cascade-shell model of turbulence with six real variables originated by Gledzer is studied numerically using Mathematica 5.1. Periodic, doubly-periodic and chaotic solutions and the routes to chaos via both frequency-locking and period-doubling are found by the Poincar\'e plot of the first mode v1v_1. The circle map on the torus is well approximated by the summation of several sinusoidal functions. The dependence of the rotation number on the viscosity parameter is in accordance with that of the sine-circle map. The complicated bifurcation structure and the revival of a stable periodic solution at the smaller viscosity parameter in the present model indicates that the turbulent state may be very sensitive to the Reynolds number.Comment: 19 pages, 12 figures submitted to JPS

    Slow Switching in Globally Coupled Oscillators: Robustness and Occurrence through Delayed Coupling

    Get PDF
    The phenomenon of slow switching in populations of globally coupled oscillators is discussed. This characteristic collective dynamics, which was first discovered in a particular class of the phase oscillator model, is a result of the formation of a heteroclinic loop connecting a pair of clustered states of the population. We argue that the same behavior can arise in a wider class of oscillator models with the amplitude degree of freedom. We also argue how such heteroclinic loops arise inevitably and persist robustly in a homogeneous population of globally coupled oscillators. Although the heteroclinic loop might seem to arise only exceptionally, we find that it appears rather easily by introducing the time-delay in the population which would otherwise exhibit perfect phase synchrony. We argue that the appearance of the heteroclinic loop induced by the delayed coupling is then characterized by transcritical and saddle-node bifurcations. Slow switching arises when the system with a heteroclinic loop is weakly perturbed. This will be demonstrated with a vector model by applying weak noises. Other types of weak symmetry-breaking perturbations can also cause slow switching.Comment: 10 pages, 14 figures, RevTex, twocolumn, to appear in Phys. Rev.

    Gravitational Radiation by Cosmic Strings in a Junction

    Full text link
    The formalism for computing the gravitational power radiation from excitations on cosmic strings forming a junction is presented and applied to the simple case of co-planar strings at a junction when the excitations are generated along one string leg. The effects of polarization of the excitations and of the back-reaction of the gravitational radiation on the small scale structure of the strings are studied.Comment: minor changes added, the published version in JCA
    • 

    corecore