203 research outputs found

    TGF-beta 1 induces human alveolar epithelial to mesenchymal cell transition (EMT)

    Get PDF
    Background: Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT. Methods: A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA. Results: The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes. Conclusion: Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon

    Comparative analysis of sequence characteristics of imprinted genes in human, mouse, and cattle

    Get PDF
    Genomic imprinting is an epigenetic mechanism that results in monoallelic expression of genes depending on parent-of-origin of the allele. Although the conservation of genomic imprinting among mammalian species has been widely reported for many genes, there is accumulating evidence that some genes escape this conservation. Most known imprinted genes have been identified in the mouse and human, with few imprinted genes reported in cattle. Comparative analysis of genomic imprinting across mammalian species would provide a powerful tool for elucidating the mechanisms regulating the unique expression of imprinted genes. In this study we analyzed the imprinting of 22 genes in human, mouse, and cattle and found that in only 11 was imprinting conserved across the three species. In addition, we analyzed the occurrence of the sequence elements CpG islands, C + G content, tandem repeats, and retrotransposable elements in imprinted and in nonimprinted (control) cattle genes. We found that imprinted genes have a higher G + C content and more CpG islands and tandem repeats. Short interspersed nuclear elements (SINEs) were notably fewer in number in imprinted cattle genes compared to control genes, which is in agreement with previous reports for human and mouse imprinted regions. Long interspersed nuclear elements (LINEs) and long terminal repeats (LTRs) were found to be significantly underrepresented in imprinted genes compared to control genes, contrary to reports on human and mouse. Of considerable significance was the finding of highly conserved tandem repeats in nine of the genes imprinted in all three species

    Relationship of Circulating Soluble Urokinase Plasminogen Activator Receptor (suPAR) Levels to Disease Control in Asthma and Asthmatic Pregnancy

    Get PDF
    Asthma has a high burden of morbidity if not controlled and may frequently complicate pregnancy, posing a risk for pregnancy outcomes. Elevated plasma level of the inflammatory biomarker soluble urokinase plasminogen activator receptor (suPAR) is related to a worse prognosis in many conditions such as infectious, autoimmune, or pregnancy-related diseases; however the value of suPAR in asthma and asthmatic pregnancy is unknown. The present study aimed to investigate the suPAR, CRP and IL-6 levels in asthma (asthmatic non-pregnant, ANP; N = 38; female N = 27) and asthmatic pregnancy (AP; N = 15), compared to healthy non-pregnant controls (HNP; N = 29; female N = 19) and to healthy pregnant women (HP; N = 58). The relationship between suPAR levels and asthma control was also evaluated. The diagnostic efficacy of suPAR in asthma control was analyzed using ROC analysis. IL-6 and CRP levels were comparable in all study groups. Circulating suPAR levels were lower in HP and AP than in HNP and ANP subjects, respectively (2.01 [1.81-2.38] and 2.39 [2.07-2.69] vs. 2.60 [1.82-3.49] and 2.84 [2.33-3.72] ng/mL, respectively, p = 0.0001). suPAR and airway resistance correlated in ANP (r = 0.47, p = 0.004). ROC analysis of suPAR values in ANP patients with PEF above and below 80% yielded an AUC of 0.75 (95% CI: 0.57-0.92, p = 0.023) and with ACT total score above and below 20 an AUC of 0.80 (95% CI: 0.64-0.95, p = 0.006). The cut-off value of suPAR to discriminate between controlled and not controlled AP and ANP was 4.04 ng/mL. In conclusion, suPAR may help the objective assessment of asthma control, since it correlates with airway resistance and has good sensitivity in the detection of impaired asthma control. Decrease in circulating suPAR levels detected both in healthy and asthmatic pregnant women presumably represents pregnancy induced immune tolerance

    Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms' tumours

    Get PDF
    Wilms' tumour is one of the most common solid tumours of childhood. 11p13 (WT1 locus) and 11p15.5 (WT2 locus) are known to have genetic or epigenetic aberrations in these tumours. In Wilms' tumours, mutation of the Wilms tumour 1 (WT1) gene at the WT1 locus has been reported, and the WT2 locus, comprising the two independent imprinted domains IGF2/H19 and KIP2/LIT1, can undergo maternal deletion or alterations associated with imprinting. Although these alterations have been identified in many studies, it is still not clear how frequently combined genetic and epigenetic alterations of these loci are involved in Wilms' tumours or how these alterations occur. To answer both questions, we performed genetic and epigenetic analyses of these loci, together with an additional gene, CTNNB1, in 35 sporadic Wilms' tumours. Loss of heterozygosity of 11p15.5 and loss of imprinting of IGF2 were the most frequent genetic (29%) and epigenetic (40%) alterations in Wilms' tumours, respectively. In total, 83% of the tumours had at least one alteration at 11p15.5 and/or 11p13. One-third of the tumours had alterations at multiple loci. Our results suggest that chromosome 11p is not only genetically but also epigenetically critical for the majority of Wilms' tumours

    A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Get PDF
    The Metallothionein (MT) is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems

    Heme Oxygenase Isoforms Differ in Their Subcellular Trafficking during Hypoxia and Are Differentially Modulated by Cytochrome P450 Reductase

    Get PDF
    Heme oxygenase (HO) degrades heme in concert with NADPH cytochrome P450 reductase (CPR) which donates electrons to the reaction. Earlier studies reveal the importance of the hydrophobic carboxy-terminus of HO-1 for anchorage to the endoplasmic reticulum (ER) which facilitates the interaction with CPR. In addition, HO-1 has been shown to undergo regulated intramembrane proteolysis of the carboxy-terminus during hypoxia and subsequent translocation to the nucleus. Translocated nuclear HO-1 was demonstrated to alter binding of transcription factors and to alter gene expression. Little is known about the homologous membrane anchor of the HO-2 isoform. The current work is the first systematic analysis in a eukaryotic system that demonstrates the crucial role of the membrane anchor of HO-2 for localization at the endoplasmic reticulum, oligomerization and interaction with CPR. We show that although the carboxy-terminal deletion mutant of HO-2 is found in the nucleus, translocation of HO-2 to the nucleus does not occur under conditions of hypoxia. Thus, we demonstrate that proteolytic regulation and nuclear translocation under hypoxic conditions is specific for HO-1. In addition we show for the first time that CPR prevents this translocation and promotes oligomerization of HO-1. Based on these findings, CPR may modulate gene expression via the amount of nuclear HO-1. This is of particular relevance as CPR is a highly polymorphic gene and deficiency syndromes of CPR have been described in humans

    Putative imprinted gene expression in uniparental bovine embryo models

    Get PDF
    Altered patterns of gene expression and the imprinted status of genes have a profound effect on cell physiology and can markedly alter embryonic and fetal development. Failure to maintain correct imprinting patterns can lead to abnormal growth and behavioural problems, or to early pregnancy loss. Recently, it has been reported that the Igf2R and Grb10 genes are biallelically expressed in sheep blastocysts, but monoallelically expressed at Day 21 of development. The present study investigated the imprinting status of 17 genes in in vivo, parthenogenetic and androgenetic bovine blastocysts in order to determine the prevalence of this unique phenomenon. Specifically, the putatively imprinted genes Ata3, Impact, L3Mbtl, Magel2, Mkrn3, Peg3, Snrpn, Ube3a and Zac1 were investigated for the first time in bovine in vitro fertilised embryos. Ata3 was the only gene not detected. The results of the present study revealed that all genes, except Xist, failed to display monoallelic expression patterns in bovine embryos and support recent results reported for ovine embryos. Collectively, the data suggest that monoallelic expression may not be required for most imprinted genes during preimplantation development, especially in ruminants. The research also suggests that monoallelic expression of genes may develop in a gene- and time-dependent manner

    Human eosinophil adhesion and degranulation stimulated with eotaxin and RANTES in vitro: Lack of interaction with nitric oxide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airway eosinophilia is considered a central event in the pathogenesis of asthma. The toxic components of eosinophils are thought to be important in inducing bronchial mucosal injury and dysfunction. Previous studies have suggested an interaction between nitric oxide (NO) and chemokines in modulating eosinophil functions, but this is still conflicting. In the present study, we have carried out functional assays (adhesion and degranulation) and flow cytometry analysis of adhesion molecules (VLA-4 and Mac-1 expression) to evaluate the interactions between NO and CC-chemokines (eotaxin and RANTES) in human eosinophils.</p> <p>Methods</p> <p>Eosinophils were purified using a percoll gradient followed by immunomagnetic cell separator. Cell adhesion and degranulation were evaluated by measuring eosinophil peroxidase (EPO) activity, whereas expression of Mac-1 and VLA-4 was detected using flow cytometry.</p> <p>Results</p> <p>At 4 h incubation, both eotaxin (100 ng/ml) and RANTES (1000 ng/ml) increased by 133% and 131% eosinophil adhesion, respectively. L-NAME alone (but not D-NAME) also increased the eosinophil adhesion, but the co-incubation of L-NAME with eotaxin or RANTES did not further affect the increased adhesion seen with chemokines alone. In addition, L-NAME alone (but not D-NAME) caused a significant cell degranulation, but it did not affect the CC-chemokine-induced cell degranulation. Incubation of eosinophils with eotaxin or RANTES, in absence or presence of L-NAME, did not affect the expression of VLA-4 and Mac-1 on eosinophil surface. Eotaxin and RANTES (100 ng/ml each) also failed to elevate the cyclic GMP levels above baseline in human eosinophils.</p> <p>Conclusion</p> <p>Eotaxin and RANTES increase the eosinophil adhesion to fibronectin-coated plates and promote cell degranulation by NO-independent mechanisms. The failure of CC-chemokines to affect VLA-4 and Mac-1 expression suggests that changes in integrin function (avidity or affinity) are rather involved in the enhanced adhesion.</p

    Adenovirus-Vectored Drug-Vaccine Duo as a Rapid-Response Tool for Conferring Seamless Protection against Influenza

    Get PDF
    Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD) in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs
    corecore