73 research outputs found

    The co-operative university: Labour, property and pedagogy

    Get PDF
    I begin this article by discussing the recent work of academics and activists to identify the advantages and issues relating to co-operative forms of higher education, and then focus on the ‘worker co-operative’ organisational form and its applicability and suitability to the governance of and practices within higher educational institutions. Finally, I align the values and principles of worker co-ops with the critical pedagogic framework of ‘Student as Producer’. Throughout I employ the work of Karl Marx to theorise the role of labour and property in a ‘co-operative university’, drawing particularly on later Marxist writers who argue that Marx’s labour theory of value should be understood as a critique of labour under capitalism, rather than one developed from the standpoint of labour

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications

    Get PDF
    This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities

    Interspecific and nutrient-dependent variations in stable isotope fractionation: experimental studies simulating pelagic multitrophic systems

    Get PDF
    Stable isotope signatures of primary producers display high inter- and intraspecific variation. This is assigned to species-specific differences in isotope fractionation and variable abiotic conditions, e.g., temperature, and nutrient and light availability. As consumers reflect the isotopic signature of their food source, such variations have direct impacts on the ecological interpretation of stable isotope data. To elucidate the variability of isotope fractionation at the primary producer level and the transfer of the signal through food webs, we used a standardised marine tri-trophic system in which the primary producers were manipulated while the two consumer levels were kept constant. These manipulations were (1) different algal species grown under identical conditions to address interspecific variability and (2) a single algal species cultivated under different nutrient regimes to address nutrient-dependent variability. Our experiments resulted in strong interspecific variation between different algal species (Thalassiosira weissflogii, Dunaliella salina, and Rhodomonas salina) and nutrient-dependent shifts in stable isotope signatures in response to nutrient limitation of R. salina. The trophic enrichment in 15N and 13C of primary and secondary consumers (nauplii of Acartia tonsa and larval herring) showed strong deviations from the postulated degree of 1.0‰ enrichment in δ13C and 3.4‰ enrichment in δ15N. Surprisingly, nauplii of A. tonsa tended to keep “isotopic homeostasis” in terms of δ15N, a pattern not described in the literature so far. Our results suggest that the diets’ nutritional composition and food quality as well as the stoichiometric needs of consumers significantly affect the degree of trophic enrichment and that these mechanisms must be considered in ecological studies, especially when lower trophic levels, where variability is highest, are concerned

    Patterns and dynamics of neutral lipid fatty acids in ants – implications for ecological studies

    Get PDF
    Background: Trophic interactions are a fundamental aspect of ecosystem functioning, but often difficult to observe directly. Several indirect techniques, such as fatty acid analysis, were developed to assess these interactions. Fatty acid profiles may indicate dietary differences, while individual fatty acids can be used as biomarkers. Ants are among the most important terrestrial animal groups, but little is known about their lipid metabolism, and no study so far used fatty acids to study their trophic ecology. We set up a feeding experiment with high- and low-fat food to elucidate patterns and dynamics of neutral lipid fatty acids (NLFAs) assimilation in ants. We asked whether dietary fatty acids are assimilated through direct trophic transfer, how diet influences NLFA total amounts and patterns over time, and whether these assimilation processes are similar across species and life stages. Results: Ants fed with high-fat food quickly accumulated specific dietary fatty acids (C18:2n6, C18:3n3 and C18:3n6), compared to ants fed with low-fat food. Dietary fat content did not affect total body fat of workers or amounts of fatty acids extensively biosynthesized by animals (C16:0, C18:0, C18:1n9). Larval development had a strong effect on the composition and amounts of C16:0, C18:0 and C18:1n9. NLFA compositions reflected dietary differences, which became more pronounced over time. Assimilation of specific dietary NLFAs was similar regardless of species or life stage, but these factors affected dynamics of other NLFAs, composition and total fat. Conclusions: We showed that ants accumulated certain dietary fatty acids via direct trophic transfer. Fat content of the diet had no effect on lipids stored by ants, which were able to synthesize high amounts of NLFAs from a sugar-based diet. Nevertheless, dietary NLFAs had a strong effect on metabolic dynamics and profiles. Fatty acids are a useful tool to study trophic biology of ants, and could be applied in an ecological context, although factors that affect NLFA patterns should be taken into account. Further studies should address which NLFAs can be used as biomarkers in natural ant communities, and how factors other than diet affect fatty acid dynamics and composition of species with distinct life histories

    Elevated XIAP expression alone does not confer chemoresistance.

    Get PDF
    BACKGROUND: In various tumour types, elevated expression of the X-linked inhibitor of apoptosis protein (XIAP) has been observed and XIAP targeting in diverse tumour entities enhanced the susceptibility to chemotherapeutic agents. Therefore, XIAP has been described and reviewed repeatedly as a chemoresistance factor in different tumour entities. However, rather than being an adverse prognostic marker, recent data suggest that elevated XIAP expression may be associated with a favourable clinical outcome. These somewhat conflicting findings, and the fact that in early studies XIAP suppressed apoptosis only when expressed transiently at levels far in excess of its physiological concentration, argue that the function of XIAP as an anti-apoptotic factor in tumour cells is both more complex and diverse than previously appreciated. METHODS: To better understand the impact of long-term elevated XIAP expression on resistance to chemotherapy, we generated cell lines stably overexpressing XIAP. The role of mitochondria was examined by stable expression of Bcl2 or stable knockdown of second mitochondria-derived activator of caspase (SMAC) in combination with up- or downregulation of XIAP expression. RESULTS: Our data show that long-term expression of XIAP at concentrations comparable to that in tumour cells (two- to five-fold increase) resulted in little or no resistance towards chemotherapeutic drugs. The XIAP overexpression only in conjunction with stable knockdown of a single XIAP-antagonising factor such as SMAC resulted in severe resistance to cytostatic agents demonstrating XIAP as a potent chemoresistance factor only in cells lacking functional XIAP regulatory circuits. CONCLUSION: Our results demonstrated that elevated XIAP expression alone cannot serve as a predictive marker of chemoresistance. Our data suggest that in order to predict the impact of XIAP on chemosusceptibility for a given tumour entity, the expression levels and functional states of all XIAP modulators need to be taken into account
    corecore