63 research outputs found

    Aging Kit Mutant Mice Develop Cardiomyopathy

    Get PDF
    Both bone marrow (BM) and myocardium contain progenitor cells expressing the c-Kit tyrosine kinase. The aims of this study were to determine the effects of c-Kit mutations on: i. myocardial c-Kit+ cells counts and ii. the stability of left ventricular (LV) contractile function and structure during aging. LV structure and contractile function were evaluated (echocardiography) in two groups of Kit mutant (W/Wv and W41/W42) and in wild type (WT) mice at 4 and 12 months of age and the effects of the mutations on LV mass, vascular density and the numbers of proliferating cells were also determined. In 4 month old Kit mutant and WT mice, LV ejection fractions (EF) and LV fractional shortening rates (FS) were comparable. At 12 months of age EF and FS were significantly decreased and LV mass was significantly increased only in W41/W42 mice. Myocardial vascular densities and c-Kit+ cell numbers were significantly reduced in both mutant groups when compared to WT hearts. Replacement of mutant BM with WT BM at 4 months of age did not prevent these abnormalities in either mutant group although they were somewhat attenuated in the W/Wv group. Notably BM transplantation did not prevent the development of cardiomyopathy in 12 month W41/W42 mice. The data suggest that decreased numbers and functional capacities of c-Kit+ cardiac resident progenitor cells may be the basis of the cardiomyopathy in W41/W42 mice and although defects in mutant BM progenitor cells may prove to be contributory, they are not causal

    Fetal Myocardium in the Kidney Capsule: An In Vivo Model of Repopulation of Myocytes by Bone Marrow Cells

    Get PDF
    Debate surrounds the question of whether the heart is a post-mitotic organ in part due to the lack of an in vivo model in which myocytes are able to actively regenerate. The current study describes the first such mouse model — a fetal myocardial environment grafted into the adult kidney capsule. Here it is used to test whether cells descended from bone marrow can regenerate cardiac myocytes. One week after receiving the fetal heart grafts, recipients were lethally irradiated and transplanted with marrow from green fluorescent protein (GFP)-expressing C57Bl/6J (B6) donors using normal B6 recipients and fetal donors. Levels of myocyte regeneration from GFP marrow within both fetal myocardium and adult hearts of recipients were evaluated histologically. Fetal myocardium transplants had rich neovascularization and beat regularly after 2 weeks, continuing at checkpoints of 1, 2, 4, 6, 8 and12 months after transplantation. At each time point, GFP-expressing rod-shaped myocytes were found in the fetal myocardium, but only a few were found in the adult hearts. The average count of repopulated myocardium with green rod-shaped myocytes was 996.8 cells per gram of fetal myocardial tissue, and 28.7 cells per adult heart tissue, representing a thirty-five fold increase in fetal myocardium compared to the adult heart at 12 months (when numbers of green rod-shaped myocytes were normalized to per gram of myocardial tissue). Thus, bone marrow cells can differentiate to myocytes in the fetal myocardial environment. The novel in vivo model of fetal myocardium in the kidney capsule appears to be valuable for testing repopulating abilities of potential cardiac progenitors

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)

    Full text link

    Embryonic cardiomyocyte, but not autologous stem cell transplantation, restricts infarct expansion, enhances ventricular function, and improves long-term survival

    Get PDF
    Contains fulltext : 118371.pdf (publisher's version ) (Open Access)AIMS: Controversy exists in regard to the beneficial effects of transplanting cardiac or somatic progenitor cells upon myocardial injury. We have therefore investigated the functional short- and long-term consequences after intramyocardial transplantation of these cell types in a murine lesion model. METHODS AND RESULTS: Myocardial infarction (MI) was induced in mice (n = 75), followed by the intramyocardial injection of 1-2x10(5) luciferase- and GFP-expressing embryonic cardiomyocytes (eCMs), skeletal myoblasts (SMs), mesenchymal stem cells (MSCs) or medium into the infarct. Non-treated healthy mice (n = 6) served as controls. Bioluminescence and fluorescence imaging confirmed the engraftment and survival of the cells up to seven weeks postoperatively. After two weeks MRI was performed, which showed that infarct volume was significantly decreased by eCMs only (14.8+/-2.2% MI+eCM vs. 26.7+/-1.6% MI). Left ventricular dilation was significantly decreased by transplantation of any cell type, but most efficiently by eCMs. Moreover, eCM treatment increased the ejection fraction and cardiac output significantly to 33.4+/-2.2% and 22.3+/-1.2 ml/min. In addition, this cell type exclusively and significantly increased the end-systolic wall thickness in the infarct center and borders and raised the wall thickening in the infarct borders. Repetitive echocardiography examinations at later time points confirmed that these beneficial effects were accompanied by better survival rates. CONCLUSION: Cellular cardiomyoplasty employing contractile and electrically coupling embryonic cardiomyocytes (eCMs) into ischemic myocardium provoked significantly smaller infarcts with less adverse remodeling and improved cardiac function and long-term survival compared to transplantation of somatic cells (SMs and MSCs), thereby proving that a cardiomyocyte phenotype is important to restore myocardial function

    Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity

    No full text
    The mechanism(s) underlying cardiac reparative effects of bone marrow-derived mesenchymal stem cells (MSC) remain highly controversial. Here we tested the hypothesis that MSCs regenerate chronically infarcted myocardium through mechanisms comprising long-term engraftment and trilineage differentiation. Twelve weeks after myocardial infarction, female swine received catheter-based transendocardial injections of either placebo (n = 4) or male allogeneic MSCs (200 million; n = 6). Animals underwent serial cardiac magnetic resonance imaging, and in vivo cell fate was determined by co-localization of Y-chromosome (Ypos) cells with markers of cardiac, vascular muscle, and endothelial lineages. MSCs engrafted in infarct and border zones and differentiated into cardiomyocytes as ascertained by co-localization with GATA-4, Nkx2.5, and α-sarcomeric actin. In addition, Ypos MSCs exhibited vascular smooth muscle and endothelial cell differentiation, contributing to large and small vessel formation. Infarct size was reduced from 19.3 ± 1.7% to 13.9 ± 2.0% (P < 0.001), and ejection fraction (EF) increased from 35.0 ± 1.7% to 41.3 ± 2.7% (P < 0.05) in MSC but not placebo pigs over 12 weeks. This was accompanied by increases in regional contractility and myocardial blood flow (MBF), particularly in the infarct border zone. Importantly, MSC engraftment correlated with functional recovery in contractility (R = 0.85, P < 0.05) and MBF (R = 0.76, P < 0.01). Together these findings demonstrate long-term MSC survival, engraftment, and trilineage differentiation following transplantation into chronically scarred myocardium. MSCs are an adult stem cell with the capacity for cardiomyogenesis and vasculogenesis which contribute, at least in part, to their ability to repair chronically scarred myocardium

    Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy

    No full text
    Aims The ability of mesenchymal stem cells (MSCs) to heal the chronically injured heart remains controversial. Here we tested the hypothesis that autologous MSCs can be safely injected into a chronic myocardial infarct scar, reduce its size, and improve ventricular function. Methods and results Female adult Göttingen swine (n = 15) underwent left anterior descending coronary artery balloon occlusion to create reproducible ischaemia-reperfusion infarctions. Bone-marrow-derived MSCs were isolated and expanded from each animal. Twelve weeks post-myocardial infarction (MI), animals were randomized to receive surgical injection of either phosphate buffered saline (placebo, n = 6), 20 million (low dose, n = 3), or 200 million (high dose, n = 6) autologous MSCs in the infarct and border zone. Injections were administered to the beating heart via left anterior thoracotomy. Serial cardiac magnetic resonance imaging was performed to evaluate infarct size, myocardial blood flow (MBF), and left ventricular (LV) function. There was no difference in mortality, post-injection arrhythmias, cardiac enzyme release, or systemic inflammatory markers between groups. Whereas MI size remained constant in placebo and exhibited a trend towards reduction in low dose, high-dose MSC therapy reduced infarct size from 18.2 ± 0.9 to 14.4 ± 1.0% (P = 0.02) of LV mass. In addition, both low and high-dose treatments increased regional contractility and MBF in both infarct and border zones. Ectopic tissue formation was not observed with MSCs. Conclusion Together these data demonstrate that autologous MSCs can be safely delivered in an adult heart failure model, producing substantial structural and functional reverse remodelling. These findings demonstrate the safety and efficacy of autologous MSC therapy and support clinical trials of MSC therapy in patients with chronic ischaemic cardiomyopathy

    The Role of Microenvironment Stromal Cells in Regenerative Medicine

    No full text
    Regenerative medicine offers the potential for treatment and possibly cures debilitating diseases including heart disease, diabetes, Parkinson’s disease, and liver failure. Approaches using stem cells from various sources are in preclinical and clinical testing. The goal of these studies is to deliver cellular products capable of replacing damaged tissue and/or cells. However, the balance between cellular proliferation and differentiation is a carefully controlled process involving a range of growth factors and cytokines produced in large part by tissue stromal cells. These stromal cells make up the tissue microenvironment and appear to be essential for normal homeostasis. We hypothesize that tissue damage in many instances involves damage to the microenvironment resulting in a lack of signals through growth factor networks necessary to maintain survival and proliferation of tissue-specific stem cells and progenitor cells. Therefore, optimal repair of disease tissue must account for the damage to the stromal environment and will require reconstitution of the microenvironment to support the survival, proliferation, and differentiation of the tissue-specific stem cells or progenitor cells. Further, stromal cells from different tissues have distinct gene profiles and so a homologous source of stromal cells would minimize potential differences that could result in unwanted toxicities or biological effects

    Activation of growth hormone releasing hormone (GHRH) receptor stimulates cardiac reverse remodeling after myocardial infarction (MI)

    No full text
    Both cardiac myocytes and cardiac stem cells (CSCs) express the receptor of growth hormone releasing hormone (GHRH), activation of which improves injury responses after myocardial infarction (MI). Here we show that a GHRH-agonist (GHRH-A; JI-38) reverses ventricular remodeling and enhances functional recovery in the setting of chronic MI. This response is mediated entirely by activation of GHRH receptor (GHRHR), as demonstrated by the use of a highly selective GHRH antagonist (MIA-602). One month after MI, animals were randomly assigned to receive: placebo, GHRH-A (JI-38), rat recombinant GH, MIA-602, or a combination of GHRH-A and MIA-602, for a 4-wk period. We assessed cardiac performance and hemodynamics by using echocardiography and micromanometry derived pressure-volume loops. Morphometric measurements were carried out to determine MI size and capillary density, and the expression of GHRHR was assessed by immunofluorescence and quantitative RT-PCR. GHRH-A markedly improved cardiac function as shown by echocardiographic and hemodynamic parameters. MI size was substantially reduced, whereas myocyte and nonmyocyte mitosis was markedly increased by GHRH-A. These effects occurred without increases in circulating levels of growth hormone and insulin-like growth factor I and were, at least partially, nullified by GHRH antagonism, confirming a receptor-mediated mechanism. GHRH-A stimulated CSCs proliferation ex vivo, in a manner offset by MIA-602. Collectively, our findings reveal the importance of the GHRH signaling pathway within the heart. Therapy with GHRH-A although initiated 1 mo after MI substantially improved cardiac performance and reduced infarct size, suggesting a regenerative process. Therefore, activation of GHRHR provides a unique therapeutic approach to reverse remodeling after MI
    corecore