23 research outputs found

    Head of State of Exception

    Get PDF
    During the escalation of the “German Autumn” in 1977 the Federal German government resorted to a specific form of crisis management that had been described as an undeclared state of exception. It was Federal chancellor Helmut Schmidt in the first place who oversaw the anti-terrorist measures in the situation room where the executive branch ruled for six weeks beyond any parliamentary control. This article examines the role that Helmut Schmidt had played for the creation of a “subjective state of exception” (Julius Hatschek) and how this could be seen as stemming from Schmidt’s earlier experiences and handling of crisis situations dating back to the 1960s. In this regard it has to be asked with Giorgio Agamben, if in the West German case, the state of exception had become the rule

    Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability

    Get PDF
    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using material from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within genera containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. A representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation.Biological and Environmental Research/[DE-FC02-07ER64494]/BER/Estados UnidosNational Science Foundation/[DGE-1256259]/NSF/Estados UnidosNational Science Foundation/[DEB-0747002]/NSF/Estados UnidosNational Science Foundation/[MCB-0702025]/NSF/Estados UnidosNational Institutes of Health/[T32 GM07215]/NIH/Estados UnidosUniversidad de Costa Rica/[]/UCR/Costa RicaMinisterio de Ciencia, TecnologĂ­a y Telecomunicaciones/[]/MICITT/Costa RicaUniversity of Wisconsin-Madison's Hilldale Undergraduate Faculty Research Fellowship/[]//Estados UnidosUCR::VicerrectorĂ­a de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de InvestigaciĂłn en BiologĂ­a Celular y Molecular (CIBCM

    Obtaining deeper insights into microbiome diversity using a simple method to block host and nontargets in amplicon sequencing

    No full text
    International audienceProfiling diverse microbiomes is revolutionizing our understanding of biological mechanisms and ecologically relevant problems, including metaorganism (host + microbiome) assembly, functions and adaptation. Amplicon sequencing of multiple conserved, phylogenetically informative loci has therefore become an instrumental tool for many researchers. Investigations in many systems are hindered, however, since essential sequencing depth can be lost by amplification of nontarget DNA from hosts or overabundant microorganisms. Here, we introduce “blocking oligos”, a low-cost and flexible method using standard oligonucleotides to block amplification of diverse nontargets and software to aid their design. We apply them primarily in leaves, where exceptional challenges with host amplification prevail. A. thaliana-specific blocking oligos applied in eight different target loci reduce undesirable host amplification by up to 90%. To expand applicability, we designed universal 16S and 18S rRNA gene plant blocking oligos for targets that are conserved in diverse plant species and demonstrate that they efficiently block five plant species from five orders spanning monocots and dicots (Bromus erectus, Plantago lanceolata, Lotus corniculatus, Amaranth sp., Arabidopsis thaliana). These can increase alpha diversity discovery without biasing beta diversity patterns and do not compromise microbial load information inherent to plant-derived 16S rRNA gene amplicon sequencing data. Finally, we designed and tested blocking oligos to avoid amplification of 18S rRNA genes of a sporulating oomycete pathogen, demonstrating their effectiveness in applications well beyond plants. Using these tools, we generated a survey of the A. thaliana leaf microbiome based on eight loci targeting bacterial, fungal, oomycete and other eukaryotic microorganisms and discuss complementarity of commonly used amplicon sequencing regions for describing leaf microbiota. This approach has potential to make questions in a variety of study systems more tractable by making amplicon sequencing more targeted, leading to deeper, systems-based insights into microbial discovery. For fast and easy design for blocking oligos for any nontarget DNA in other study systems, we developed a publicly available R package
    corecore