252 research outputs found
Laughter and humor as complementary and alternative medicines for dementia patients
<p>Abstract</p> <p>Background</p> <p>The number of dementia patients has increased worldwide, with an estimated 13.7 million dementia patients in the Asia Pacific region alone. This number is expected to increase to 64.6 million by the year 2050.</p> <p>Discussion</p> <p>As a result of advances in research, there several pharmacological therapies available for the treatment of dementia patients. However, current treatments do not suppress the disease process and cannot prevent dementia, and it will be some time before these goals are realized. In the meantime, complementary and alternative medicine (CAM) is an important aspect in the treatment of dementia patients to improve their quality of life throughout the long course of the disease. Considering the individuality of dementia patients, applicability of laughter and humor therapy is discussed. Even though there are many things that need to be elucidated regarding the mechanisms underlying the beneficial effects of laughter and humor, both may be good CAM for dementia patients if they are applied carefully and properly.</p> <p>Summary</p> <p>In this debate article, the physiological basis and actual application of laughter and humor in the treatment of dementia patients are presented for discussion on the applicability to dementia patients.</p
Discovering temporal regularities in retail customers’ shopping behavior
In this paper we investigate the regularities characterizing the temporal purchasing behavior of the customers of a retail market chain. Most of the literature studying purchasing behavior focuses on what customers buy while giving few importance to the temporal dimension. As a consequence, the state of the art does not allow capturing which are the temporal purchasing patterns of each customers. These patterns should describe the customerâ\u80\u99s temporal habits highlighting when she typically makes a purchase in correlation with information about the amount of expenditure, number of purchased items and other similar aggregates. This knowledge could be exploited for different scopes: set temporal discounts for making the purchases of customers more regular with respect the time, set personalized discounts in the day and time window preferred by the customer, provide recommendations for shopping time schedule, etc. To this aim, we introduce a framework for extracting from personal retail data a temporal purchasing profile able to summarize whether and when a customer makes her distinctive purchases. The individual profile describes a set of regular and characterizing shopping behavioral patterns, and the sequences in which these patterns take place. We show how to compare different customers by providing a collective perspective to their individual profiles, and how to group the customers with respect to these comparable profiles. By analyzing real datasets containing millions of shopping sessions we found that there is a limited number of patterns summarizing the temporal purchasing behavior of all the customers, and that they are sequentially followed in a finite number of ways. Moreover, we recognized regular customers characterized by a small number of temporal purchasing behaviors, and changing customers characterized by various types of temporal purchasing behaviors. Finally, we discuss on how the profiles can be exploited both by customers to enable personalized services, and by the retail market chain for providing tailored discounts based on temporal purchasing regularity
Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators
A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu[superscript 230], located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.Glenn Foundation for Medical ResearchEllison Medical FoundationJuvenile Diabetes Research Foundation InternationalUnited Mitochondrial Disease FoundationNational Institutes of Health (U.S.)National Institute of Allergy and Infectious Diseases (U.S.
Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening
INTRODUCTION: The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD) models suggest that the vascular geometry created by an implanted stent causes local alterations in wall shear stress (WSS) that are associated with neointimal hyperplasia (NH). Foreshortening is a potential limitation of stent design that may affect stent performance and the rate of restenosis. The angle created between axially aligned stent struts and the principal direction of blood flow varies with the degree to which the stent foreshortens after implantation. METHODS: In the current investigation, we tested the hypothesis that stent foreshortening adversely influences the distribution of WSS and WSS gradients using time-dependent 3D CFD simulations of normal arteries based on canine coronary artery measurements of diameter and blood flow. WSS and WSS gradients were calculated using conventional techniques in ideal (16 mm) and progressively foreshortened (14 and 12 mm) stented computational vessels. RESULTS: Stent foreshortening increased the intrastrut area of the luminal surface exposed to low WSS and elevated spatial WSS gradients. Progressive degrees of stent foreshortening were also associated with strut misalignment relative to the direction of blood flow as indicated by analysis of near-wall velocity vectors. CONCLUSION: The current results suggest that foreshortening may predispose the stented vessel to a higher risk of neointimal hyperplasia
Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice
<p>Abstract</p> <p>Background</p> <p>Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice.</p> <p>Methods</p> <p>HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr<sup>51</sup>-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines.</p> <p>Results</p> <p>In melanoma-bearing mice, cisplatin (4 mg/kg B.W.) reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p < 0.1) and weight (p < 0.1). HemoHIM itself did not inhibit melanoma cell growth <it>in vitro</it>, and did not disturb the effects of cisplatin <it>in vitro</it>. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-γ secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction.</p> <p>Conclusion</p> <p>HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.</p
Multiscale Simulations Suggest a Mechanism for the Association of the Dok7 PH Domain with PIP-Containing Membranes
Dok7 is a peripheral membrane protein that is associated with the MuSK receptor tyrosine kinase. Formation of the Dok7/MuSK/membrane complex is required for the activation of MuSK. This is a key step in the complex exchange of signals between neuron and muscle, which lead to neuromuscular junction formation, dysfunction of which is associated with congenital myasthenic syndromes. The Dok7 structure consists of a Pleckstrin Homology (PH) domain and a Phosphotyrosine Binding (PTB) domain. The mechanism of the Dok7 association with the membrane remains largely unknown. Using multi-scale molecular dynamics simulations we have explored the formation of the Dok7 PH/membrane complex. Our simulations indicate that the PH domain of Dok7 associates with membranes containing phosphatidylinositol phosphates (PIPs) via interactions of the β1/β2, β3/β4, and β5/β6 loops, which together form a positively charged surface on the PH domain and interact with the negatively charged headgroups of PIP molecules. The initial encounter of the Dok7 PH domain is followed by formation of additional interactions with the lipid bilayer, and especially with PIP molecules, which stabilizes the Dok7 PH/membrane complex. We have quantified the binding of the PH domain to the model bilayers by calculating a density landscape for protein/membrane interactions. Detailed analysis of the PH/PIP interactions reveal both a canonical and an atypical site to be occupied by the anionic lipid. PH domain binding leads to local clustering of PIP molecules in the bilayer. Association of the Dok7 PH domain with PIP lipids is therefore seen as a key step in localization of Dok7 to the membrane and formation of a complex with MuSK
HMMerThread: Detecting Remote, Functional Conserved Domains in Entire Genomes by Combining Relaxed Sequence-Database Searches with Fold Recognition
Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de
Downregulation of TFPI in breast cancer cells induces tyrosine phosphorylation signaling and increases metastatic growth by stimulating cell motility
<p>Abstract</p> <p>Background</p> <p>Increased hemostatic activity is common in many cancer types and often causes additional complications and even death. Circumstantial evidence suggests that tissue factor pathway inhibitor-1 (TFPI) plays a role in cancer development. We recently reported that downregulation of TFPI inhibited apoptosis in a breast cancer cell line. In this study, we investigated the effects of TFPI on self-sustained growth and motility of these cells, and of another invasive breast cancer cell type (MDA-MB-231).</p> <p>Methods</p> <p>Stable cell lines with TFPI (both α and β) and only TFPIβ downregulated were created using RNA interference technology. We investigated the ability of the transduced cells to grow, when seeded at low densities, and to form colonies, along with metastatic characteristics such as adhesion, migration and invasion.</p> <p>Results</p> <p>Downregulation of TFPI was associated with increased self-sustained cell growth. An increase in cell attachment and spreading was observed to collagen type I, together with elevated levels of integrin α2. Downregulation of TFPI also stimulated migration and invasion of cells, and elevated MMP activity was involved in the increased invasion observed. Surprisingly, equivalent results were observed when TFPIβ was downregulated, revealing a novel function of this isoform in cancer metastasis.</p> <p>Conclusions</p> <p>Our results suggest an anti-metastatic effect of TFPI and may provide a novel therapeutic approach in cancer.</p
- …