9 research outputs found

    A Review on Automatic Analysis of Human Embryo Microscope Images

    Get PDF
    Over the last 30 years the process of in vitro fertilisation (IVF) has evolved considerably, yet the efficiency of this treatment remains relatively poor. The principal challenge faced by doctors and embryologists is the identification of the embryo with the greatest potential for producing a child. Current methods of embryo viability assessment provide only a rough guide to potential. In order to improve the odds of a successful pregnancy it is typical to transfer more than one embryo to the uterus. However, this often results in multiple pregnancies (twins, triplets, etc), which are associated with significantly elevated risks of serious complications. If embryo viability could be assessed more accurately, it would be possible to transfer fewer embryos without negatively impacting IVF pregnancy rates. In order to assist with the identification of viable embryos, several scoring systems based on morphological criteria have been developed. However, these mostly rely on a subjective visual analysis. Automated assessment of morphological features offers the possibility of more accurate quantification of key embryo characteristics and elimination of inter- and intra-observer variation. In this paper, we describe the main embryo scoring systems currently in use and review related works on embryo image analysis that could lead to an automatic and precise grading of embryo quality. We summarise achievements, discuss challenges ahead, and point to some possible future directions in this research field

    Systolic, Diastolic and Mean Arterial Pressure at 30-33 Weeks in the Prediction of Preeclampsia

    Get PDF
    International audienceA holistic view of the Bengal–Nicobar Fan system requires sampling the full sedimentary section of the Nicobar Fan, which was achieved for the first time by International Ocean Discovery Program (IODP) Expedition 362 west of North Sumatra. We identified a distinct rise in sediment accumulation rate (SAR) beginning ∼9.5 Ma and reaching 250–350 m/Myr in the 9.5–2 Ma interval, which equal or far exceed rates on the Bengal Fan at similar latitudes. This marked rise in SAR and a constant Himalayan-derived provenance necessitates a major restructuring of sediment routing in the Bengal–Nicobar submarine fan. This coincides with the inversion of the Eastern Himalayan Shillong Plateau and encroachment of the west-propagating Indo–Burmese wedge, which reduced continental accommodation space and increased sediment supply directly to the fan. Our results challenge a commonly held view that changes in sediment flux seen in the Bengal–Nicobar submarine fan were caused by discrete tectonic or climatic events acting on the Himalayan–Tibetan Plateau. Instead, an interplay of tectonic and climatic processes caused the fan system to develop by punctuated changes rather than gradual progradation
    corecore