182 research outputs found

    Content-adaptive color transform for image compression

    Get PDF
    Cataloged from PDF version of article.In this paper, an adaptive color transform for image compression is introduced. In each block of the image, coefficients of the color transform are determined from the previously compressed neighboring blocks using weighted sums of the RGB pixel values, making the transform block-specific. There is no need to transmit or store the transform coeffi- cients because they are estimated from previous blocks. The compression efficiency of the transform is demonstrated using the JPEG image coding scheme. In general, the suggested transformation results in better peak signal-to-noise ratio (PSNR) values for a given compression level. ( C) 2011 Society of Photo-Optical Instrumentation Engineer

    Arrival Rate Estimation Algorithm for Single Group Slotted ALOHA Systems

    Get PDF
    Abstract-In this letter, a new recursive tracking algorithm is presented that is capable of estimating the real arrival rate, real , to the system. The estimated value of the arrival rate, estimated , is used to dynamically adjust the control parameters of the system, hence ensuring that the operating point of the system is pushed toward the required settling point, whatever the real arrival rate to the system. This algorithm utilizes system information through the feedback channel in order to dynamically adjust the estimated value of the arrival rate and hence update the values of the control parameters

    Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays

    Get PDF
    BACKGROUND: Tissue microarrays (TMAs) have become a valuable resource for biomarker expression in translational research. Immunohistochemical (IHC) assessment of TMAs is the principal method for analysing large numbers of patient samples, but manual IHC assessment of TMAs remains a challenging and laborious task. With advances in image analysis, computer-generated analyses of TMAs have the potential to lessen the burden of expert pathologist review. METHODS: In current commercial software computerised oestrogen receptor (ER) scoring relies on tumour localisation in the form of hand-drawn annotations. In this study, tumour localisation for ER scoring was evaluated comparing computer-generated segmentation masks with those of two specialist breast pathologists. Automatically and manually obtained segmentation masks were used to obtain IHC scores for thirty-two ER-stained invasive breast cancer TMA samples using FDA-approved IHC scoring software. RESULTS: Although pixel-level comparisons showed lower agreement between automated and manual segmentation masks (κ=0.81) than between pathologists' masks (κ=0.91), this had little impact on computed IHC scores (Allred; [Image: see text]=0.91, Quickscore; [Image: see text]=0.92). CONCLUSIONS: The proposed automated system provides consistent measurements thus ensuring standardisation, and shows promise for increasing IHC analysis of nuclear staining in TMAs from large clinical trials

    Capturing Global Spatial Context for Accurate Cell Classification in Skin Cancer Histology

    Get PDF
    The spectacular response observed in clinical trials of immunotherapy in patients with previously uncurable Melanoma, a highly aggressive form of skin cancer, calls for a better understanding of the cancer-immune interface. Computational pathology provides a unique opportunity to spatially dissect such interface on digitised pathological slides. Accurate cellular classification is a key to ensure meaningful results, but is often challenging even with state-of-art machine learning and deep learning methods. We propose a hierarchical framework, which mirrors the way pathologists perceive tumour architecture and define tumour heterogeneity to improve cell classification methods that rely solely on cell nuclei morphology. The SLIC superpixel algorithm was used to segment and classify tumour regions in low resolution H&E-stained histological images of melanoma skin cancer to provide a global context. Classification of superpixels into tumour, stroma, epidermis and lumen/white space, yielded a 97.7% training set accuracy and 95.7% testing set accuracy in 58 whole-tumour images of the TCGA melanoma dataset. The superpixel classification was projected down to high resolution images to enhance the performance of a single cell classifier, based on cell nuclear morphological features, and resulted in increasing its accuracy from 86.4% to 91.6%. Furthermore, a voting scheme was proposed to use global context as biological a priori knowledge, pushing the accuracy further to 92.8%. This study demonstrates how using the global spatial context can accurately characterise the tumour microenvironment and allow us to extend significantly beyond single-cell morphological classification.Comment: Accepted by MICCAI COMPAY 2018 worksho

    The battle over Syria's reconstruction

    Get PDF
    Reconstruction is becoming the new battleground in the Syrian conflict—its continuation by other means. It is instrumentalized by the regime as a way to reconsolidate its control over the country and by rival regional and international powers to shape the internal balance of power and establish spheres of influence in the country. The paper examines the Asad regime’s practices, including co-optation of militia leaders via reconstruction concessions and use of reconstruction to clear strategic areas of opposition-dominated urban settlements. The paper then surveys how the geopolitical struggle in Syria has produced an asymmetry as regards reconstruction: those powers that lost the geo-political contest on the ground seek to use geo-economic superiority to reverse the geo-political outcome. Then the impact of proxy wars and spheres of influence in the country on the security context for reconstruction is examined. Finally, the reconstruction initiatives of the various external parties are assessed, including Russia, Iran and Turkey as well as the spoiler role by which the US seeks to obstruct reconstruction that would spell victory in Syria for its Russian and Iranian rivals.PostprintPeer reviewe

    Coupled Analysis of In Vitro and Histology Tissue Samples to Quantify Structure-Function Relationship

    Get PDF
    The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the correspondingly complex biological functions these structures perform. To help close this information gap we define here several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge, there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain, breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native tissues and their corresponding in vitro engineered cell culture models

    Multimodal microscopy for automated histologic analysis of prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostate cancer is the single most prevalent cancer in US men whose gold standard of diagnosis is histologic assessment of biopsies. Manual assessment of stained tissue of all biopsies limits speed and accuracy in clinical practice and research of prostate cancer diagnosis. We sought to develop a fully-automated multimodal microscopy method to distinguish cancerous from non-cancerous tissue samples.</p> <p>Methods</p> <p>We recorded chemical data from an unstained tissue microarray (TMA) using Fourier transform infrared (FT-IR) spectroscopic imaging. Using pattern recognition, we identified epithelial cells without user input. We fused the cell type information with the corresponding stained images commonly used in clinical practice. Extracted morphological features, optimized by two-stage feature selection method using a minimum-redundancy-maximal-relevance (mRMR) criterion and sequential floating forward selection (SFFS), were applied to classify tissue samples as cancer or non-cancer.</p> <p>Results</p> <p>We achieved high accuracy (area under ROC curve (AUC) >0.97) in cross-validations on each of two data sets that were stained under different conditions. When the classifier was trained on one data set and tested on the other data set, an AUC value of ~0.95 was observed. In the absence of IR data, the performance of the same classification system dropped for both data sets and between data sets.</p> <p>Conclusions</p> <p>We were able to achieve very effective fusion of the information from two different images that provide very different types of data with different characteristics. The method is entirely transparent to a user and does not involve any adjustment or decision-making based on spectral data. By combining the IR and optical data, we achieved high accurate classification.</p
    corecore