25 research outputs found

    Environmental change reduces body condition, but not population growth, in a high‐arctic herbivore

    Get PDF
    Environmental change influences fitness‐related traits and demographic rates, which in herbivores are often linked to resource‐driven variation in body condition. Coupled body condition‐demographic responses may therefore be important for herbivore population dynamics in fluctuating environments, such as the Arctic. We applied a transient Life‐Table Response Experiment (‘transient‐LTRE’) to demographic data from Svalbard barnacle geese (Branta leucopsis), to quantify their population‐dynamic responses to changes in body mass. We partitioned contributions from direct and delayed demographic and body condition‐mediated processes to variation in population growth. Declines in body condition (1980–2017), which positively affected reproduction and fledgling survival, had negligible consequences for population growth. Instead, population growth rates were largely reproduction‐driven, in part through positive responses to rapidly advancing spring phenology. The virtual lack of body condition‐mediated effects indicates that herbivore population dynamics may be more resilient to changing body condition than previously expected, with implications for their persistence under environmental change

    Boom and bust of a moose population – a call for integrated forest management

    Get PDF
    This is the postprint version of the article. The published article can be located at www.springerlink.comThere is increasing pressure to manage forests for multiple objectives, including ecosystem services and biodiversity, alongside timber production. However, few forests are currently co-managed for timber and wildlife, despite potential economic and conservation benefits. We present empirical data from a commercial Norway spruce ( Picea abies ) and Scots pine ( Pinus sylvestris ) production system in southern Norway in which moose ( Alces alces ) are an important secondary product. Combining long-term hunting and forestry records, we identified temporal vari- ation in clear-felling over the past five decades, peaking in the 1970s. Herbicide treatment of regenerating stands and a fivefold increase in moose harvest has lead to a reduction in availability of successional forest per moose of [ 90 % since the 1960s. Field estimates showed that spraying with the herbicide glyphosate reduced forage availability by 60 and 96 % in summer and winter, respectively, 4 years after treatment. It also reduced moose use and habitat selection of young spruce stands compared with unsprayed stands. Together these lines of evidence suggest that forest man- agement led to an increase in moose carrying capacity during the 1970s and a subsequent decline thereafter. This is likely to have contributed to observed reductions in moose population productivity in southern Norway and is counter to sustainable resource management. We therefore call for better integration and long-term planning between forestry and wildlife management to minimise forest damage and the development of large fluctuations in ungulate populations

    Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines

    Get PDF
    Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February-May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations

    Species data for understanding biodiversity dynamics: The what, where and when of species occurrence data collection

    No full text
    Abstract 1. The availability and quantity of observational species occurrence records have greatly increased due to technological advancements and the rise of online portals, such as the Global Biodiversity Information Facility (GBIF), coalescing occurrence records from multiple datasets. It is well‐established that such records are biased in time, space and taxonomy, but whether these datasets differ in relation to origin have not been assessed. If biases are specific to different types of datasets, and the relative contribution from these datasets have changed over time, these shifting biases will have implications for interpretations of results and, consequentially, for management and conservation measures. 2. We examined observational GBIF records from Norway to test potential differences in taxonomic, time and land‐cover biases between 10 different datasets, with a focus on red‐listed and non‐native species. 3. The datasets differ in their taxonomic coverage, with datasets dominated by citizen scientist recorders focusing greatly on birds. The number of records has increased over time; in particular, citizen science datasets have had a sharp increase in recent years. 4. The different datasets (including division of the datasets by conservation status) showed differences in geographical coverage. Anthropogenic land covers have more records than would be expected by chance in the majority of cases. Remote areas have fewer records than would be expected, underlining the prevalence of a roadside bias. 5. Accounting for biases in opportunistic species occurrence records need to be a dynamic rather than static process, as the taxonomic and geographical biases have changed over time and differ between datasets, depending on origin and inherent characteristics. Data‐collection programmes should be designed to counteract the biases of the specific datasets, and methods to account for the biases in existing data should be developed. When utilizing compiled, open‐source data, care must be taken to ensure complementarity between the datasets, both regarding time and space. Incorporating strengths and accounting for biases between datasets can strengthen the integration between species occurrence records with different origins for science‐policy impact and management

    Small Changes in Gene Expression of Targeted Osmoregulatory Genes When Exposing Marine and Freshwater Threespine Stickleback (Gasterosteus aculeatus) to Abrupt Salinity Transfers

    Get PDF
    Salinity is one of the key factors that affects metabolism, survival and distribution of fish species, as all fish osmoregulate and euryhaline fish maintain osmotic differences between their extracellular fluid and either freshwater or seawater. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations in both marine and freshwater environments, where the physiological and genomic basis for salinity tolerance adaptation is not fully understood. Therefore, our main objective in this study was to investigate gene expression of three targeted osmoregulatory genes (Na+/K+-ATPase (ATPA13), cystic fibrosis transmembrane regulator (CFTR) and a voltage gated potassium channel gene (KCNH4) and one stress related heat shock protein gene (HSP70)) in gill tissue from marine and freshwater populations when exposed to non-native salinity for periods ranging from five minutes to three weeks. Overall, the targeted genes showed highly plastic expression profiles, in addition the expression of ATP1A3 was slightly higher in saltwater adapted fish and KCNH4 and HSP70 had slightly higher expression in freshwater. As no pronounced changes were observed in the expression profiles of the targeted genes, this indicates that the osmoregulatory apparatuses of both the marine and landlocked freshwater stickleback population have not been environmentally canalized, but are able to respond plastically to abrupt salinity challenges

    Home range size variation in a recovering wolf population: evaluating the effect of environmental, demographic, and social factors

    Get PDF
    Home range size in mammals is a key ecological trait and an important parameter in conservation planning, and has been shown to be influenced by ecological, demographic and social factors in animal populations. Information on space requirements is especially important for carnivore species which range over very large areas and often come into direct conflict with human interest. We used long-term telemetry-location data from a recovering wolf population in Scandinavia to investigate variation in home range size in relation to environmental and social characteristics of the different packs. Wolves showed considerable variation in home range size, which ranged from 259 to 1,676 km(2). Although wolf density increased fourfold during the study period, we found no evidence that intraspecific competition influenced range size. Local variation in moose density, which was the main prey for most packs, did not influence wolf home range size. Home ranges increased with latitude and elevation and decreased with increased roe deer density. Although prey biomass alone did not influence range size, our data suggest that there is a correlation between habitat characteristics, choice of prey species and possible hunting success, which currently combine to shape home range size in Scandinavian wolves

    How Life History Influences Population Dynamics in Fluctuating Environments

    Get PDF
    A major question in ecology is how age-specific variation in demographic parameters influences population dynamics. Based on long-term studies of growing populations of birds and mammals, we analyze population dynamics by using fluctuations in the total reproductive value of the population. This enables us to account for random fluctuations in age distribution. The influence of demographic and environmental stochasticity on the population dynamics of a species decreased with generation time. Variation in age-specific contributions to total reproductive value and to stochastic components of population dynamics was correlated with the position of the species along the slow-fast continuum of life-history variation. Younger age classes relative to the generation time accounted for larger contributions to the total reproductive value and to demographic stochasticity in "slow" than in "fast" species, in which many age classes contributed more equally. In contrast, fluctuations in population growth rate attributable to stochastic environmental variation involved a larger proportion of all age classes independent of life history. Thus, changes in population growth rates can be surprisingly well explained by basic species-specific life-history characteristics
    corecore