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Abstract Home range size in mammals is a key ecological trait and an important parameter in 16 

conservation planning, and has been shown to be influenced by ecological, demographic and 17 

social factors in animal populations. Information on space requirements is especially 18 

important for carnivore species which range over very large areas and often come into direct 19 

conflict with human interest. We used long term telemetry-location data from a recovering 20 

wolf population in Scandinavia to investigate variation in home range size in relation to 21 

environmental and social characteristics of the different packs. Wolves showed considerable 22 

variation in home range size, from 259 km2 to 1676 km2. Although wolf density increased 23 

fourfold during the study period, we found no evidence that intraspecific competition 24 

influenced range size. Local variation in moose density, which was the main prey for most 25 

packs, did not influence wolf home range size. Home ranges increased with latitude and 26 

elevation and decreased with increased roe deer density. Although, prey biomass alone did not 27 

influence range size, our data suggest that there is a correlation between habitat 28 

characteristics, choice of prey species and possible hunting success, which currently combine 29 

to shape home range size in Scandinavian wolves.  30 

 31 

Keywords  territory, Canis lupus, prey density, population density  32 

 33 

Introduction 34 

 35 

Home range size is one of the most fundamental ecological parameters that can be described 36 

for any given species and can be viewed as a trade-off between resource access and energetic 37 

costs. The minimum size of an animal’s home range is fundamentally determined by the 38 

ability to obtain enough food resources for survival and to secure successful reproduction 39 

(Burt 1943) but the actual use of space is influenced by a far more complex array of factors. 40 
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Range use in mammals appears to be influenced by a combination of ecological and social 41 

factors, including not only resource abundance and prey predictability (Loveridge et al. 2009), 42 

but also environmental productivity (Herfindal et al. 2005), body mass (Harstad and Bunell 43 

1979; Swihart et al. 1988, but see Nilsen and Linnell 2006), population density (Dahle and 44 

Swenson 2003; Benson et al. 2006), migration of prey (Mech and Boitani 2003), social 45 

organization (Peterson et al. 1984; Loveridge et al. 2009), population stage or phase of 46 

colonisation (Okarma et al. 1998; Fuller et al. 2003; Mech and Boitani 2003), anthropogenic 47 

influence (Rich et al. 2012) and individual variation (Jedrzejewski et al. 2007; van Beest et al. 48 

2011).  49 

Apart from its interest as an ecological parameter, the identification of factors shaping 50 

home range size is important in both management and conservation planning of species and 51 

populations. Home range size is often used for designing management units or protected areas 52 

(Woodroffe and Ginsberg 2000) and can be used as a tool for obtaining estimates of 53 

population size (Gros et al. 1996), in which accurate estimates of home range size and their 54 

variation are vital. Territoriality, a common behavior in many large carnivores, results in 55 

limited spatial overlap among individuals or social groups, thus home range size can act as a 56 

good proxy for their local density in a given area.  Understanding the process behind variation 57 

in home range size can facilitate extrapolation and aid in creating qualified predictions of a 58 

species’ space use or local density in new areas (Herfindal et al. 2005).  This can be 59 

particularly important for large carnivores that roam extensive areas and whose presence often 60 

causes conflicts with human interest (Woodroffe et al. 2005), including through their potential 61 

impact on prey populations. 62 

The aim of this study was to determine the influence of ecological and social factors in 63 

shaping home range size in a large carnivore, the wolf (Canis lupus). The wolf is a well-64 

studied territorial, group-living species (Harrington 1987; Vilà et al. 1994; Mech and Boitani 65 
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2003; Zub et al. 2003) that often uses much larger areas than expected from its body size 66 

(Harestad and Bunell 1979). Wolves display a large variation in home range size both 67 

between and within populations. Although there is a general understanding of large scale 68 

variation in wolf home range size (see reviews in Fuller et al. 2003; Nilsen et al. 2005; 69 

Jedrzejewski et al. 2007), the underlying mechanisms causing finer scale variation within 70 

populations is poorly understood (Rich et al. 2012, Gurarie et al. 2011; Fritts and Mech 1981; 71 

Hayes and Harestad 2000). On a global scale, wolf home range size has been shown to relate 72 

negatively to prey biomass and wolf density whereas pack size, latitude, and human density 73 

tend to correlate with larger home ranges (Ballard et al 1987; Wydeven et al. 1995; Okarma et 74 

al. 1998; Fuller et al. 2003; Jedrzejewski 2007; Rich et al. 2012). However, the results have 75 

not been consistent between studies suggesting that the mechanisms shaping home ranges are 76 

complex and likely to be influenced by several interacting social and ecological factors.  77 

Prey biomass, for example, is expected to have a negative influence on home range size 78 

alone but the predictability and availability of prey (Rich et al. 2012), the choice of prey 79 

species (Fuller et al. 2003) and landscape features correlated with hunting success (Kauffman 80 

et al. 2007; Rich et al. 2012; Gervasi et al. in press) may play an equally important role in 81 

modulating this effect. Wolves preying on small to medium sized ungulates have in general 82 

smaller ranges and a stronger correlation between range size and prey density than those 83 

preying on large ungulates (moose Alces alces or bison Bison bison; Wydeyen et al. 1995; 84 

Fuller et al. 2003). Landscape features, such as ruggedness, may facilitate predation and 85 

therefore increase the prey biomass available to wolves resulting in smaller home ranges, but 86 

can also act as a refuge for the prey with the opposite result (Rich et al. 2012).  87 

Although access to food resources is believed to be a key factor in determining home range 88 

size, social factors can be equally important, especially in a territorial species. Within 89 

populations, harvest of wolves has been shown to increase home range size by creating social 90 
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disturbance in the packs, (Rich et al. 2012), whereas an increase in population density reduced 91 

range size as an effect of enhanced inter-territorial competition (Fritts and Mech 1981; Hayes 92 

and Harestad 2000), given that at least part of the population is approaching saturation.  In 93 

addition, many species show high intraspecific variability in home range size, where a 94 

substantial part of the variation is related to individual differences (Loveridge et al. 2009, van 95 

Beest et al. 2011).  96 

Using the Scandinavian wolves as the study species gave us the opportunity to analyze 97 

space use in a recovering wolf population. In addition to a large telemetry-based dataset from 98 

43 resident, scent-marking wolves in 1999-2011, extensive national monitoring systems in 99 

Norway and Sweden have tracked the establishment of wolf packs during the process of re-100 

colonisation and generated a near complete overview of the population’s density and 101 

distribution (starting in 1983 with the first confirmed reproduction; Wabakken et al. 2001; 102 

Vilà et al. 2003; Liberg et al. 2005). The growing wolf population on the Scandinavian 103 

Peninsula (had reached ~300 wolves by 2011; Wabakken et al. 2011) not only gives us the 104 

possibility to study the influence of social dynamics and increasing inter-pack competition but 105 

generated an extensive variability in ecological factors within the study area. The northern 106 

geographical location of the Scandinavian Peninsula displays a distinct latitudinal gradient 107 

(mild coast to continental interior) even within the relatively small area used by the wolf 108 

population. In addition, we examined the influence of ungulate prey density, prey choice, and 109 

landscape-prey related factors on home range size using density estimates of ungulate prey in 110 

a multi-ungulate prey ecosystem.  111 

First, we explored the effect of prey density on wolf home range size which is expected to 112 

be negatively correlated if space use is mainly shaped by resource abundance. We did this for 113 

the two main prey species (moose and roe deer Capreolus capreolus; Sand et al. 2005, 2008) 114 

combined and separately, in order to detect potential effects of the large body size differences 115 
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between these two prey species on shaping home ranges. Secondly, we tested for the 116 

influence of environmental features on range size, and discuss them in relation to correlated 117 

productivity, prey availability, and anthropogenic impact and their possible influence on wolf 118 

behaviour. In addition, we included social factors (wolf density, social organisation within 119 

packs) to investigate the influence and strength of social dynamics in comparison to the 120 

ecological factors.  121 

 122 

Materials and Methods 123 

 124 

Study area 125 

 126 

The study area is located across the south-central parts of Sweden and Norway on the 127 

Scandinavian Peninsula (Fig. 1; 59°-62°N, 11°-19°E). The area primarily consists of 128 

intensively managed boreal coniferous forest interspersed with bogs and lakes. Norway 129 

spruce (Picea abies) and Scots pine (Pinus sylvestris) are the dominant tree species, mixed 130 

with varying amounts of birch (Betula pendula and B. pubescens), aspen (Populous tremula) 131 

and alder (Alnus incana and A. glutinosa). Intensive forest management has created an 132 

extensive network of forest gravel roads throughout the area. The influence of infrastructure 133 

and the proportion of agricultural land in the landscape increases in the south-western, eastern 134 

and southern parts of the study area while elevation range increase towards the north-west 135 

reaching up to 1750 m a.s.l.. Human density in Scandinavia averages 17 humans km-2, but 136 

large parts of the wolf range have less than 1 human km-2 (Swedish National Atlas 1991; 137 

Statistics Norway 2003). The climate is continental with average temperatures of -7C° in 138 

January and 15C° in July. The ground is usually snow covered between December and March 139 

with a general snow depth of 30 to 60 cm in mid-winter (Swedish National Atlas 1991; 140 
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Statistics Norway 2003). Moose and roe deer are the two most common ungulates within the 141 

wolf range and are by far the main prey for the Scandinavian wolves (Sand et al. 2005, 2008). 142 

All wolves had access to both species but with a spatial variation in densities and ratio 143 

between the two species. Red deer (Cervus elaphus), wild reindeer (Rangifer tarandus), 144 

fallow deer (Dama dama) and wild boar (Sus scrofa) occurred locally, but have not been 145 

observed as important prey species among the studied packs.  146 

 147 

Study animals and data collection 148 

 149 

We used location data on wolves monitored within the on-going Scandinavian Wolf Research 150 

Project (http://skandulv.nina.no) between 1999 and 2011. Wolves were immobilised from 151 

helicopters following continuously updated veterinary procedures (Arnemo et al. 2011) and 152 

equipped with either a VHF radio collar (Telonics Mod. 500, Mesa Arizona), a GPS remote 153 

downloadable collar (GPS-Simplex, TVP Positioning AB, Lindesberg, Sweden) or a GPS-154 

GSM collar (Tellus, TVP Positioning AB; GPS-plus, Vectronic Aerospace, Berlin, Germany). 155 

The capture methods were approved by the Swedish Animal Welfare Agency and the 156 

Norwegian Experimental Animal Ethics committee. For more detailed description of capture 157 

and handling see Sand et al. (2006). Location data from VHF-collars were collected from the 158 

ground or from a fix-winged airplane at least once per week and GPS-collars were 159 

programmed to take a location 2-6 times per 24-hour. Location frequency was increased up to 160 

one location every half hour during intensive study periods (Sand et al. 2008). Only data from 161 

adult resident, scent-marking individuals were used in the analyses and each “pack” was 162 

classified according to their social organisation: solitary (one wolf), pair-living (two scent-163 

marking wolves) or pack-living (3-10 wolves). Scandinavian wolf packs are in general small, 164 

consisting of an adult male and female with or without pups of the year. Offspring older than 165 
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one year rarely stay with the parents. Reproductive status in summer was estimated from a 166 

combination of pre- and post-reproduction intensive monitoring of movement patterns by 167 

adult radio collared wolves during the parturition period. Successful reproduction was later 168 

confirmed by observations of pups or their signs (Alfredéen 2006) and occasionally by 169 

examinations of dens or rendezvous sites. The minimum number of wolves within each pack 170 

(pack size) was estimated by comprehensive and repeated snow-tracking and faecal DNA 171 

monitoring during a five months period each winter as a part of national surveys of wolves 172 

(see below under wolf density).  173 

 174 

Estimations of home range size 175 

 176 

Available location data for each pack varied greatly in duration (number of days) and 177 

location frequency. Analyses of annual home range size against number of months of data 178 

collection indicated that a minimum of nine months with ≥ 5 locations per month was 179 

necessary to estimate an annual home range (Fig. 2). Detailed methodology for this 180 

conclusion is provided in the Electronic Supplementary Materials (ESM; Appendix 1). Only 181 

annual home ranges that fulfilled these requirements were used in further analyses. Sufficient 182 

data was available for 43 wolf individuals belonging to 28 different packs (ESM: Table S1).  183 

Wolf home ranges were estimated according to their biological cycle starting from May 1st 184 

(time of birth; Alfredéen 2006) until April 30th the next year. When possible, we estimated 185 

several annual ranges per pack (ntotal = 63). Extreme outliers and extra-territorial forays were 186 

removed before running the analyses (0.3% of all locations). No differences in space use were 187 

found between the female and male wolves in a pack when both where collared 188 

simultaneously (paired t-test; t19 = 0.9167, P = 0.37, n = 20), thus the data was pooled in 189 

subsequent analyses. The social organisation (i.e. “solitary”,” pair” or “pack-living”) of the 190 
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wolves within a specific pack may have changed between years but the approximate 191 

geographical placement was always the same. Partial turnover (one of the individuals 192 

replaced) occurred on a few occasions between years. If there was a complete turnover the 193 

new wolves were given a new pack name even if the “new” pack had approximately the same 194 

geographical location 195 

We used three different home range estimators: (i) Minimum Convex Polygon (MCP 196 

100% of locations; Mohr and Stumpf 1966), (ii) Objective Restricted Edge Polygon (OREP 197 

100%) and (iii) Fixed kernel (95%; Seaman and Powell 1996) with the smoothing multiplier 198 

set to 1. All estimates of home range size were obtained using Ranges8 software (v2.7, 199 

Anatrack Ltd, Wareham, UK). OREP can be described as a concave polygon and was used 200 

because it better described non-linear shaped outlines of an animal’s range than MCP’s and 201 

thereby excludes areas not being used by the animal (Getz et al. 2007). Ranges defined by 202 

OREPs are equivalent to the local nearest neighbour Convex Hull method (Getz and Wilmers 203 

2004), but with an objective choice of the edge-restriction distance, here set to a kernel-based 204 

outlier exclusion distance (Ranges8). For methods (i) and (ii) the full data set with all 205 

available locations was used. A reduced dataset (maximum of 2 randomly selected locations 206 

per calendar day) was used for method (iii) as kernel smoothing is strongly influenced by 207 

sampling frequency (Seaman et al. 1999).  208 

 209 

Wolf density 210 

 211 

National wolf population surveys have been conducted in both Sweden and Norway (by 212 

county and national wildlife management agencies and staff from several universities and 213 

research institutes) every year during this study (Wabakken et al. 2011). These annual 214 

population surveys were based on intensive snow-tracking and generated a near complete 215 
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description of the spatial distribution of existing wolf pairs, packs and stationary solitary 216 

individuals each winter, as well as an estimate of population size. We used local density of 217 

packs as a proxy for analyzing effect of wolf density on home range size.  Centre points 218 

(north and east coordinates) were available from the surveys for all packs including both 219 

marked and unmarked wolves (based on snow tracking). We used a 40 km radius (i.e. two 220 

times the radius of a large home range in this study) buffer zone around the centre point of 221 

each pack in the study to estimate the number of neighbouring packs (both marked and 222 

unmarked), i.e. pack density. 223 

  224 

Prey density  225 

 226 

To estimate winter density of moose and roe deer, pellet count surveys were conducted 227 

during one unique year for 15 of the packs (1 pack was surveyed in 2 years). In each home 228 

range, a grid of 1x1 km squared plots was systematically distributed over the area (about 50-229 

100 plots per home range). Each square plot contained 40 circular sub-plots along its 230 

perimeter, each of them covering 100 m2 for moose and 10 m2 for roe deer. All sample plots 231 

were surveyed in spring, after snow melt. During data collection, we looked at the pellets’ 232 

structure, consistency, color, and their position in relation to the vegetation in order to include 233 

only new pellet groups i.e., produced after leaf fall the previous autumn. Winter density of 234 

moose and roe deer (individuals km-2) was estimated by dividing mean pellet group counts for 235 

all sample plot by period of accumulation (days between leaf fall and field count: 198-231 236 

days) and assumed defecation rate (roe deer: 22 day-1 Cederlund and Liberg 1995; moose: 14 237 

day-1 Rönnegård et al. 2008). During the study period, roe deer and moose populations in 238 

Scandinavia have been fluctuating due to changes in harvest policy, winter conditions, 239 

forestry strategies and predation pressure (Lavsund et al. 2003, Grøtan et al. 2005). These 240 
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fluctuations discourage the extrapolation of density estimates from one year to another, 241 

resulting in an incomplete dataset of prey density estimates. Before proceeding, we 242 

investigated possible influences of winter prey densities on home range size using the limited 243 

data in a set of simple linear regression models.  Data on prey choice was available for each of 244 

the sampled packs (Sand unpublished, c.f. Sand et al. 2005; 2008). Wolves preyed mainly on 245 

moose (73-100 % of ungulate kills) except in two packs where roe deer was the main prey (71 246 

and 98 %). We evaluated the importance of moose and roe deer density for the total dataset (n 247 

= 16), and for a subset of the packs where moose dominated the diet of wolves (n=14). These 248 

analyses revealed a negative correlation between roe deer density and home range size but no 249 

correlation with moose density, irrespectively of the main prey species (see results). With this 250 

information, we decided to include only an index of roe deer density (and not moose), based 251 

on annual hunting statistics, in the proceeding multivariate analyses. Previous research has 252 

indicated that hunting bag statistics are a reliable index of ungulate density under 253 

Scandinavian conditions (Solberg et al. 1999; Grøtan et al. 2005). The use of hunting bag 254 

statistics as an index of roe deer density was supported by a strong positive correlation with 255 

density based on pellet counts (Spearman correlation = 0.83, n = 16). Consequently, we 256 

expect hunting bag statistics to accurately reflect temporal and spatial variation in roe deer 257 

density for our data. 258 

Annual hunting bag statistics were available at municipality level in Norway (Statistics 259 

Norway; www.ssb.no) and at hunting district level in Sweden (Liberg, unpublished).  A 260 

separate map was produced for each year with the number of roe deer shot km-2 estimated for 261 

each Norwegian municipality or Swedish district excluding water bodies. An index of roe 262 

deer density per annual home range was extracted using area weighted means (AWM) in 263 

Hawths tools (Beyers 2004), ArcGIS v 9.3 (ESRI, Redlands, CA, USA). We lacked data from 264 

a few districts or municipalities for some of the years. If the area of missing data was < 50 %, 265 
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we estimated AWM on the existing data (10 home ranges with partial missing data). When 266 

exceeding 50 %, we used the average value from the previous and the subsequent year of data 267 

(4 home ranges). 268 

 269 

Environmental data 270 

 271 

As an index of increasing human influence on the landscape, the proportion of open cultivated 272 

land below the altitudinal tree line (agricultural land, orchards, fields or other types of 273 

cultivated land) was calculated from a vegetation map (Swedish Corine land cover map 274 

Lantmäteriet, Sweden, 25x25 m merged with Northern Research Institute’s vegetation map, 275 

Norway, 30x30m into a 25x25m raster). Based on national road maps (Road map 1:100 000, 276 

Lantmäteriet, Sweden; N50 kartdata, Statens kartverk, Norway), roads were categorised into 277 

main and minor roads. In Norway, main roads included public roads (European, national, 278 

county and municipal roads) which are most often paved, but sometimes narrow. Minor roads 279 

included forest gravel roads which are mainly private. The Swedish categories of roads differ 280 

from Norway but were converted based on existing overlaps of the two maps to fit the same 281 

categories. Roads were divided into two categories, main roads (all tarred) and minor roads 282 

(mostly gravel forest roads).  Road density (main and minor roads separately) was calculated 283 

by first converting roads to points spacing 250 m, on which a kernel density was estimated 284 

with bandwidth (h) set to 1000 and raster cell size to 500 m. Mean road density and mean 285 

elevation (DEM 25ˣ25 m; Geographical Data Sweden, Lantmäteriet; Norge digital, Statens 286 

kartverk, Norway) in each home range was extracted using the National Water-Quality 287 

Assessment (NAWQA) Area-Characterization tool box (Price et al. 2010. Latitude (degrees 288 

north) was derived at the arithmetic mean of all locations in each home range. All GIS 289 

analyses were performed in ArcGIS v 9.3. 290 
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 291 

Statistical analyses 292 

 293 

To examine variation in annual wolf home range size we used linear mixed models (LMM) in 294 

the library nlme (Pinheiro et al. 2010) implemented in program R (R Development Core Team 295 

2011). Home range size (km2) was fitted as the response variable in all models. Two extreme 296 

outliers (MCP: 3 525 and 2 589 km2) were identified and removed before proceeding with the 297 

analyses.  These outliers included one reproducing pack composed of a father who mated with 298 

his daughter, possibly explaining the extraordinary movement patterns (Koppang, ESM: 299 

Table S1; Eriksen et al. 2009), and one single wolf in a transition state after losing its partner 300 

(Ulriksberg, ESM: Table S1), resulting in a 50 % increase in home range size from the 301 

previous year. There was no spatial correlation between home range sizes (i.e. home ranges 302 

closer to each other were not more similar in size). 303 

Prior to entry into models, the fixed variables (reproduction, wolf density, social 304 

organisation, pack size, area of open cultivated land, elevation, road densities, roe deer 305 

density and latitude; ESM: Table S2) were assessed for multicollinearity using the variance 306 

inflation factor (VIF; Zuur et al. 2009) in the R library AED (Zuur 2010). Pack identity was 307 

fitted as a random intercept in all models to account for patterns in the residuals of the fixed 308 

effects occurring due to repeated observations of the same pack. We used likelihood ratio tests 309 

to evaluate if the inclusion of a random effect was indeed necessary (global model with MCP: 310 

L1 = 18.61, P < 0.0001; Zuur et al. 2009). As each pack (n = 28) had only a few data entries (311 

x = 2.2) we were not able to fit pack identity as a random slope in the model. 312 

Model selection was performed based on AICc, (Burnham and Andersen 2002) in the R 313 

package MuMIn (Barton 2009). All variables were centralized and standardized with 2 SD to 314 

facilitate interpretation of the relative strength of parameter estimates (Gelman 2008; Grueber 315 
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et al. 2011). When needed, we tested if using different transformations gave a better fit. We 316 

performed model averaging, based on AICc with conditional standard errors and confidence 317 

intervals (Burnham and Anderson 2002), as it is usually more stable than only choosing the 318 

best model (Grueber et al. 2011).  We choose to include models with ∆i ≤ 2 as a cut off in the 319 

averaging process, as these are considered to have sustainable support (Burnham and 320 

Anderson 2002). A cut off of ∆i  ≤ 4 generated far too many models, increasing the risk of 321 

spurious results from parameter estimates of models with low weight (Grueber et al. 2011). 322 

To assess the amount of variation explained by the fixed effects of the models used in the 323 

average model (not possible to estimate directly for the average model), we calculated R2 as 324 

the square of the correlation between the predicted values of the models, without the random 325 

effect, and the observed data. R2 for the random part was estimated by calculating the intra-326 

class correlation ρ (Rodriguez and Elo, 2003; Skrondal and Rabe-Hesketh, 2004), which 327 

provides the ratio of the variance of the random effect to the total variance, and thus can be 328 

interpreted as the proportion of variation explained by each individual pack. Model selection 329 

and model averaging was run for all three methods of estimating home ranges (MCP, OREP 330 

and Kernel) to examine whether the choice of home range estimator influences the results. 331 

 332 

 333 

Results 334 

 335 

We observed large variation in home range size between packs, even when excluding the two 336 

outliers mentioned above (259-1676 km2; Table 1). Home ranges estimated using the MCP 337 

method were significant larger than the corresponding ranges estimated with OREP (paired t-338 

test: t58 = 5.38, P < 0.0001) or with kernel methods (t58 = 13.14, P < 0.0001). There was a 339 
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high year-to-year stability in space use (mean overlap between annual ranges; MCP: 84 ± 8% 340 

SD; OREP: 81 ± 9%; Kernel: 76 ± 12%). 341 

 342 

Home range size and prey density 343 

 344 

The variation in roe deer densities across wolf home ranges (0.0-4.0 roe deer km-2; SE = 0.30, 345 

n = 16) was much larger than observed for moose density (0.86-1.74 moose km-2, SE= 0.069 346 

excluding one outlier at 3.4 moose km-2). Wolf home range size was not correlated with 347 

moose density but was negatively correlated with roe deer density (Fig. 3). The exclusion of 348 

two packs where wolves mainly preyed on roe deer did not change the observed correlations 349 

(Fig 3, ESM: Table S3). The method of home range estimator did not influence the result 350 

(ESM: Table S3). Average winter ungulate biomass for all home ranges was 401 kg km-2 (± 351 

160 SD; based on mean weight of standing population: moose = 271 kg, roe deer = 22.6 kg; 352 

Zimmerman et al. unpublished) and because of the large size difference between the prey 353 

species, biomass was mainly driven by moose density. Prey biomass was stable along the 354 

latitude gradient within the study area (linear regression: r2 = -0.07, P = 0.87).   355 

 356 

Model performance - effects on home range size 357 

 358 

Several of the fixed variables were correlated (VIF > 3; ESM: Table S4) which required 359 

caution when deciding which variables to include in the same model. For the variables 360 

describing social status, we chose to keep pack size rather than social organisation (single, 361 

pair or pack). Scandinavian wolf packs are small (relative to other populations) resulting in 362 

reproductive status being strongly correlated with pack size (i.e. non-reproducing: pack size = 363 

1-3 wolves, reproducing: 3-10 wolves) thus preventing these two variables from being 364 
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included in the same model.  Model sets including the variable “reproduction in summer” 365 

(binary) indicated that this variable was uninformative across all methods of home range 366 

estimates, so we therefore retained pack size in the final models. Among the environmental 367 

variables, roe deer density was negatively correlated with elevation and latitude and positively 368 

correlated with increasing proportion of open cultivated land. We chose to keep roe deer 369 

density and latitude in the global model, as these variables were possible to combine (VIF < 370 

3). A prior examination of the roe deer density index using the global model justified the use 371 

of a reciprocal transformation of the variable (roe deer:  untransformed [∆i = 2.44] or log-372 

transformed [∆i = 1.9]). 373 

According to the final models, latitude and roe deer density were the most important 374 

variables explaining variation in home range size (Table 2 and 3). Home ranges decreased 375 

with increasing roe deer density and increased with increasing latitude. The importance of roe 376 

deer density and latitude were stable across all types of home range estimates. The density of 377 

minor roads was positively related to home range size estimated by OREP’s (Table 3) and 378 

was almost as important as roe deer density (Table 2) but had less effect for the other types of 379 

estimates. An effect of pack size on home range size was mainly observed when using kernel 380 

estimates, where range size decreased with increasing number of wolves in a pack (Table 3). 381 

Local wolf density did not influence range size. To evaluate whether excluded environmental 382 

variables may better explain variation in home range size than the variables chosen, we used 383 

the final model for each range estimator (Table 2) and first replaced the roe deer density index 384 

with proportion of open cultivated land, while keeping all other variable constant. The model 385 

including roe deer density better explained variation in home range size than the model with 386 

proportion of open cultivated land (MCP: ∆i= 5.71; OREP: ∆i= 2.26, Kernel: ∆i= 1.68). The 387 

process was repeated with latitude replaced by elevation which improved the models across 388 

all estimates (MCP:∆i = -1.19, OREP : ∆i = -1.10, Kernel: ∆i= -3.36). Altogether, these results 389 
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suggest that home range size is influenced by a productivity gradient in the landscape which is 390 

reflected in the density of roe deer and influenced by elevation. In addition, we observed large 391 

inter-pack variation in home range size (i.e. R2 of random effects), ranging between 0.55 and 392 

0.65 for MCP, 0.54-0.55 for OREP and 0.37-0.53 for Kernel.  393 

The choice of home range estimator did not strongly influence the main result of the 394 

models. However, the model selection using concave polygons (OREP) included less models 395 

(∆AICc <2) than for the more commonly used convex polygons (MCP) method.  The inclusion 396 

of areas in MCP, which are not actually used by the wolves, may to some extent confound the 397 

results. For example, the positive effect of major roads on home range size when using MCP, 398 

but not for OREP, is likely an effect of these roads functioning as a “natural” barrier for wolf 399 

home movements which is not used but still included in MCP ranges.  400 

 401 

Discussion 402 

 403 

Scandinavian wolves display a large variation in home range size, with even the smallest ones 404 

(< 260 km2) being larger than the average size in continental Europe (150-240 km2; Ciucci et 405 

al. 1997, Okarma et al. 1998, Jedrzejewski et al. 2001, Kusak et al. 2005), whereas the upper 406 

range (< 1680 km2) approaches home range sizes of Alaskan and Yukon wolf populations 407 

(Hayes and Harestad 2000; Adams et al., 2008). Large within and between population 408 

variation in home range size exists among wolves wherever they occur (Adams et al. 2008; 409 

Fuller et al. 2003; Jedrzejewski et al. 2007) which was further confirmed in this study.  410 

A combination of correlated ecological factors, rather than social factors, explained most 411 

of the intra-population variation observed in home range size among Scandinavian wolves, 412 

after large individual variation was taken into account.  Roe deer density, elevation and 413 

latitude were all important variables predicting wolf home range size. Roe deer density was 414 
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negatively correlated with, elevation and latitude, and positively correlated with open 415 

cultivated land. These correlations likely reflect both the sensitivity of roe deer to snow depth 416 

and their preferences for agricultural areas which increase foraging opportunities (Mysterud et 417 

al. 1997, 1999; Gervasi et al. in press). In the process of understanding why we find smaller 418 

ranges in areas of high roe deer densities, with consequently lower average elevation and a 419 

higher proportion of open cultivated land, we need to consider the different components 420 

separately as well as the interactions between them. Latitude has previously been observed to 421 

influence home range size among wolf populations (Okarma et al 1998; Jedrzejewski et al. 422 

2007). Resource availability is generally believed to be the driving force explaining variation 423 

in animal home range size (Burt 1943) and these observations were mainly explained by 424 

decreased primary productivity and prey biomass with increasing latitude. Jedrzejewski et al 425 

(2007) found that range size increased with latitude, also independently from prey density on 426 

a large geographical scale. In our study area, the decrease in primary productivity with 427 

latitude was not reflected in a decrease in ungulate biomass but rather represented a noticeable 428 

environmental gradient from a mosaic of open cultivated land and forest in the south, to a 429 

more homogeneous coniferous taiga with increasing elevation range and winter snow depths 430 

in the north. This suggests that a different mechanism other than pure prey biomass is likely to 431 

drive variation in home range size among Scandinavian wolves.  432 

Applying Scandinavian wolf home ranges on to a North American data set (Fuller et al. 433 

2003) showed an interesting deviation from the general pattern. Average home range size in 434 

Scandinavia was much larger than in North American areas with corresponding levels of prey 435 

biomass (Fig. 4). Moose are the main prey species for a large part of the Scandinavian wolf 436 

population (Sand et al 2005; 2008) except for some few packs where roe deer are their main 437 

prey. Even if we excluded packs where wolves were known to primarily feed on roe deer, 438 

Scandinavian home ranges remained an outlier. This shows that prey biomass is not a limiting 439 
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factor for Scandinavian wolves, further supported by the fact that the space restricted wolf 440 

population on Isle Royale can survive within ranges one third of the size of those documented 441 

in our study, although prey (moose) density is similar and pack sizes generally larger (Sand et 442 

al. 2012). An alternative explanation could be that home range size reflects prey availability 443 

rather than prey biomass. However, Scandinavian wolves preying on moose strongly select 444 

for calves (Sand et al. 2005, 2008) and because of a highly selective hunter harvest regime, 445 

the moose population contains a relatively high proportion of calves compared to North 446 

American populations (Sand et al. 2012). Therefore, it is not likely that variation in prey 447 

availability of moose can explain the observed deviation of mean home ranges size of wolves 448 

in Scandinavia either (Fig. 4).  Prey choice is more likely to be an important source of 449 

variation in home range size within the Scandinavian wolf population. Even though moose 450 

density was a poor predictor of home range size, an effect of prey density was apparent when 451 

considering only the smaller ungulate prey species, the roe deer.  452 

Wolves are flexible and opportunistic predators (Peterson & Ciucci 2003; Gurarie et al. 453 

2011) and Scandinavian wolves are likely to prey on roe deer opportunistically. A switch of 454 

main prey species from moose to the smaller roe deer may thus be expected with an 455 

increasing roe deer density (Eklund 2012), possibly explaining the decrease in home range 456 

size at lower latitudes (Fuller et al. 2003). Whereas the predation patterns on moose are 457 

strongly influenced by both age of the moose and habitat characteristics (Wikenros et al. 458 

2009; Sand et al. 2005, 2008; Gervasi et al. in press), the small size of the roe deer may not 459 

require selection neither for certain individuals nor for specific habitats. If prey availability 460 

rather than abundance is important (Rich et al 2012), the lack of response in home range size 461 

to moose density may partly be explained by the relation between predation success and 462 

habitat (Gervasi et al. in press).  463 
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Home ranges at higher elevations were larger, suggesting that elevation has some influence 464 

on wolf movement pattern. Within our study area, higher elevation is correlated with rugged 465 

habitat and with latitude. In the south the landscape is almost flat while further north the 466 

topography becomes increasingly broken and steep. These habitat features may have an effect 467 

both on wolf movement behaviour and on the behaviour of the prey and the accessibility of 468 

prey for wolves. Rich et al. (2012) suggested that increased difficulties in hunting deer 469 

explained the positive correlation between wolf home range size and a ruggedness index. It is 470 

also possible that latitude, and elevation, reflect a gradient in the density of some smaller 471 

(non-ungulate) prey species that we were not able to measure. Although there is no evidence 472 

that these non-ungulate species constitute major parts of wolf diet, they may have more subtle 473 

influences in some key periods or on larger scale movement patterns. 474 

The Scandinavian wolf population has constantly increased during the years of the study 475 

and an effect of population density on home range size was expected but not observed. The 476 

lack of a density effect, in contrast to observations in several other carnivore species (Dahle 477 

and Swenson 2003, Benson et al 2006) including wolves (Fritts and Mech 1981, Hayes and 478 

Harestad 2000; Rich et al. 2012), suggests that the population is still in a recolonizing phase 479 

and has not yet reached the threshold where density has become a limiting factor on space 480 

use. This may be further supported by the low number of observed intraspecific killings 481 

among Scandinavian wolves (Wabakken et al. 2009) compared to North America (Mech 482 

1994, Mech and Boitani, 2003; Adams et al. 2008). Still, some packs in the centre of the 483 

Scandinavian wolf range had up to five neighbouring packs which may be expected to have a 484 

limiting effect on space use. The inverse effect of density may however be masked by some of 485 

the smallest home ranges being isolated from the main population's distribution (Fig. 1). The 486 

apparently low intra-specific competition observed between the Scandinavian wolves is likely 487 

contributing to a low-cost of maintaining large home ranges for the wolves.  488 
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Following Powell (2000) an animal’s home range should not be larger than that size at 489 

which the benefits received exceeds the cost of maintaining it. Linear elements (such as gravel 490 

forest roads and conventional seismic lines) have been shown to facilitate wolf movement 491 

when used as low energy travel paths (Eriksen et al. 2008; Gurarie et al. 2011; Latham et al. 492 

2011). High densities of these elements may reduce the cost of keeping a large home range 493 

thus explaining the positive correlation between home range size and minor roads. 494 

Alternatively this correlation could be a response to more human disturbance (Rich et al. 495 

2012), but as most minor roads are only occasionally used by loggers, hunters, and for other 496 

recreational use, this explanation is less likely.  497 

Previous research has shown that Scandinavian wolves choose to settle in areas of 498 

continuous conifer forest, rich in prey but with low densities of urban areas, roads and 499 

cultivated land (Karlsson et al. 2007). However, the increase of the Scandinavian wolf 500 

population has since resulted in increasingly more packs in close proximity to areas of high 501 

anthropogenic influence. This exposure may result in a behavioural adaptation of wolves 502 

towards human presence (Gurarie et al. 2011; Bateman and Fleming 2012). Our results show 503 

that home ranges were in general much smaller in more developed areas (i.e. areas with high 504 

roe deer density) suggesting that the resource quality in some areas is high enough to allow 505 

for a rather drastic decrease (< 85%) in range size but still being sufficient to support 506 

successful reproduction among the wolves. Smaller home ranges in human inhabited areas 507 

allow for higher wolf densities with the potential to trigger an increment in human-wolf 508 

conflict in the future.  There is likely to be a major debate in the near future about the desired 509 

distribution of wolves given that the social conflicts with wolves are already intense (Skogen 510 

et al. 2013), and that political goals call for a further increase in wolf numbers in Scandinavia. 511 

 512 
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Table 1 Annual home range size (km2) of Scandinavian adult, scent-marking wolves monitored 716 

between 1999 -2011, estimated as Minimum Convex Polygons (MCP), Objective Restricted Edge 717 

Polygons (OREP) and Fixed Kernels (Kernel). Two outliers were removed before calculating mean 718 

(MCP: 3525 and 2589 km2) 719 

Home range Mean SE Min Max 

MCP (100%) 1 017 73 259 1 676 

OREP (100%) 916 74 259 1 676 

Kernel (95%) 708 57 141 1 089 

Note: Mean and standard error were based on the number of 

unique packs (n = 27). 

    720 
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Table 2 Multi-model interference based on linear mixed models on effects of latitude (Lat), 721 

roe deer density index (Roe: reciprocal transformed), density of wolf packs (Dens), pack size 722 

(Pack), minor roads (MiR) and major roads (MaR) on annual home range size (n = 63) in 723 

Scandinavian wolves. Only models with ∆AICc < 2 are shown. Pack identity was fitted as 724 

random factor in all models. R2 values show the amount of variation explained by the fixed 725 

effects combined after excluding the random factor.  726 

Method  Model k AICc ∆AICc ωi R2 

MCP 100% Lat+Roe 5 863.2 0.0 0.18 0.24 

 

Lat+Roe+Dens 6 863.5 0.2 0.16 0.25 

 

Lat+Roe+Dens+Pack 7 863.5 0.2 0.16 0.26 

 

Lat+Roe+Pack 6 863.7 0.4 0.15 0.25 

 

Lat+Roe+MiR 6 864.1 0.9 0.12 0.27 

 

Lat+Roe+MaR 6 865.0 1.7 0.08 0.25 

 

Lat+Roe+Pack+MiR 7 865.0 1.7 0.08 0.27 

 

Lat+Roe+Dens+MiR 7 865.0 1.8 0.08 0.27 

 

     

 

OREP 100% Lat+Roe+MiR 6 856.0 0.0 0.47 0.31 

 Lat+Roe 5 856.9 0.9 0.30 0.26 

 Lat+MiR 5 857.3 1.4 0.24 0.25 

 

     

 

Kernel 95% Lat+Roe+Pack 6 845.4 0.0 0.40 0.27 

 Lat+Roe 5 846.6 1.2 0.23 0.24 

 Lat+Roe+Pack+MiR 7 846.7 1.2 0.22 0.29 

 Lat+Roe+MiR 6 847.3 1.8 0.16 0.26 
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Table 3 Summary results after model averaging the effects of each parameter on annual home 728 

range size (n = 63) in wolves using three different methods of range estimations (Minimum 729 

Convex Polygon, Outlier Restricted Edge Polygon and Fixed Kernel). Model-averaged 730 

parameter estimate with unconditional SE, 95% confidence limits and the relative importance 731 

of parameters (Anderson 2008) are based on the sum of Akaike’s weights across models with 732 

∆AICc < 2. Pack identity was fitted as random factor in all models. 733 

 

     
Method Parameter 

Relative 

importance 
Estimatea 

Unconditional 

SE 

Confidence interval   

Lower              Upper 

MCP 100% 

       (Intercept)  1 025.6 70.01 888.4 1 162.9 

 Latitude 1.00 641.5 166.96 314.3 968.8 

 Roe deer index 1.00 -399.4 171.88 -736.3 -62.5 

 Wolf density 0.40 -157.2 104.11 -361.3 46.9 

 Pack size 0.39 -128.0 91.02 -306.3 50.4 

 Minor roads 0.27 148.9 139.51 -124.60 422.31 

 Major roads 0.08 116.3 131.85 -142.12 374.72 

       

OREP 100%       

 (Intercept)  991.7 64.55 793.7 1 053.2 

 Latitude 1.00 587.5 161.69 270.6 904.4 

 Roe deer index 0.76 -311.4 162.90 -630.7 7.85 

 Minor roads 0.70 226.46 126.11 -20.73 473.64 

       

Kernel 95%       

 (Intercept)  718.45 53.03 614.5 822.4 

 Latitude 1.00 420.57 129.00 167.8 673.4 

 Roe deer index 1.00 -275.93 136.65 -543.8 -8.1 

 Pack size 0.62 -145.50 80.70 -303.7 12.7 

 Minor roads 0.37 121.51 104.15 -82.62 325.64 

 

      a Effect size has been standardized on two SD following Gelman (2008).  734 
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Fig. 1 Study area with home ranges of radio collared wolves (dark polygons) in Sweden and Norway, 736 

1999 to2011. The distribution of scent marking pairs and packs in the Scandinavian wolf population, 737 

all years combined, is displayed by the grey area (20 km buffer zones around centre point of each 738 

home range). Black crosses shown locations of resident solitary wolves outside the main distribution.  739 

 740 

Fig. 2 Proportion of annual wolf home range size (MCP 100%) in relation to number of months 741 

included in the range estimation when resampling 34 annual Scandinavian wolf ranges (mean = 120, 742 

range 5-1264 locations month-1). Mean range sizes above the dotted line decreased less than 10% 743 

compared to the annual range.  744 

 745 

Fig. 3 Annual home range size (Outlier Restricted Edge Polygon: OREP) of Scandinavian wolves 746 

in relation to a moose density and b roe deer density (logarithmic scale). Solid regression lines include 747 

all sampled packs (n =16), dotted regression lines exclude two packs mainly preying on roe deer (n 748 

=14).  749 

 750 

Fig 4. Mean home range size (MCP) of wolf populations in relation to ungulate biomass. 751 

North American data from Fuller et al. 2003 (table 6.3), with the inclusion of Scandinavia 752 

(encircled; this study).  Symbols indicate the main prey species for the wolf population. In 753 

Fuller et al. 2003, density of each ungulate species was multiplied with a relative index 754 

depending on size. Roe deer was not present, so a relative index of 0.5 was given for roe deer 755 

in the Scandinavian data.  756 


