77 research outputs found

    Analysis methods for the first KATRIN neutrino-mass measurement

    Get PDF
    We report on the dataset, data handling, and detailed analysis techniques of the first neutrino-mass measurement by the Karlsruhe Tritium Neutrino (KATRIN) experiment, which probes the absolute neutrino-mass scale via the ÎČ-decay kinematics of molecular tritium. The source is highly pure, cryogenic T2 gas. The ÎČ electrons are guided along magnetic field lines toward a high-resolution, integrating spectrometer for energy analysis. A silicon detector counts ÎČ electrons above the energy threshold of the spectrometer, so that a scan of the thresholds produces a precise measurement of the high-energy spectral tail. After detailed theoretical studies, simulations, and commissioning measurements, extending from the molecular final-state distribution to inelastic scattering in the source to subtleties of the electromagnetic fields, our independent, blind analyses allow us to set an upper limit of 1.1 eV on the neutrino-mass scale at a 90% confidence level. This first result, based on a few weeks of running at a reduced source intensity and dominated by statistical uncertainty, improves on prior limits by nearly a factor of two. This result establishes an analysis framework for future KATRIN measurements, and provides important input to both particle theory and cosmology

    Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment

    Get PDF
    The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium ÎČ\beta-decay endpoint region with a sensitivity on mÎœm_\nu of 0.2 \,eV/c2^2 (90% CL). For this purpose, the ÎČ\beta-electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6 \,keV. A dominant systematic effect of the response of the experimental setup is the energy loss of ÎČ\beta-electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the \linebreak energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% T2_2 gas mixture at 30 \,K, as used in the first KATRIN neutrino mass analyses, as well as a D2_2 gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of σ(mÎœ2)<10−2 eV2\sigma(m_\nu^2)<10^{-2}\,\mathrm{eV}^2 [arXiv:2101.05253] in the KATRIN neutrino-mass measurement to a subdominant level.Comment: 12 figures, 18 pages; to be submitted to EPJ

    Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign

    Get PDF
    We present the results of the light sterile neutrino search from the second Karlsruhe Tritium Neutrino (KATRIN) measurement campaign in 2019. Approaching nominal activity, 3.76×106 tritium ÎČ-electrons are analyzed in an energy window extending down to 40 eV below the tritium end point at E0=18.57  keV. We consider the 3Îœ+1 framework with three active and one sterile neutrino flavors. The analysis is sensitive to a fourth mass eigenstate m24â‰Č1600  eV2 and active-to-sterile mixing |Ue4|2≳6×10−3. As no sterile-neutrino signal was observed, we provide improved exclusion contours on m24 and |Ue4|2 at 95% C.L. Our results supersede the limits from the Mainz and Troitsk experiments. Furthermore, we are able to exclude the large Δm241 solutions of the reactor antineutrino and gallium anomalies to a great extent. The latter has recently been reaffirmed by the BEST Collaboration and could be explained by a sterile neutrino with large mixing. While the remaining solutions at small Δm241 are mostly excluded by short-baseline reactor experiments, KATRIN is the only ongoing laboratory experiment to be sensitive to relevant solutions at large Δm241 through a robust spectral shape analysis

    New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs

    Full text link
    We report on the direct cosmic relic neutrino background search from the first two science runs of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the kinematic endpoint at 18.57 keV. The analysis is sensitive to a local relic neutrino overdensity of 9.7e10 (1.1e11) at a 90% (95%) confidence level. A fit of the integrated electron spectrum over a narrow interval around the kinematic endpoint accounting for relic neutrino captures in the Tritium source reveals no significant overdensity. This work improves the results obtained by the previous kinematic neutrino mass experiments at Los Alamos and Troitsk. We furthermore update the projected final sensitivity of the KATRIN experiment to <1e10 at 90% confidence level, by relying on updated operational conditions.Comment: 7 pages, 7 figure

    Direct neutrino-mass measurement with sub-electronvolt sensitivity

    Get PDF
    • 

    corecore