122 research outputs found

    'Workshop for Nagoya Protocol and Plant Treaty National Focal Points in Latin America and the Caribbean’

    Get PDF
    The capacity-building Workshop for National Focal Points in Latin America and the Caribbean on Mutually Supportive Implementation of the Nagoya Protocol and the International Treaty on Plant Genetic Resources for Food and Agriculture, was held 25-28 September 2018 at the International Potato Center (CIP), Lima, Peru. The workshop was attended by over 60 participants, including National Focal Points for the Nagoya Protocol to the Convention on Biological Diversity and the International Treaty on Plant Genetic Resources (CBD) for Food and Agriculture (Plant Treaty), from 16 countries in Latin America and the Caribbean. The workshop was also attended by representatives from the Secretariats of the Plant Treaty and CBD, the International Seed Federation, farmer and indigenous peoples organizations, national and international agricultural research organizations and experts from the region who have been working for decades on access and benefit-sharing policy issues. The objectives of the workshop were to: 1. Strengthen network ties between National Focal Points within each country and across the regions; 2. Analyse challenges and opportunities for implementing the Plant Treaty and the Nagoya Protocol in a mutually supportive manner, and in ways that advance complementary policy goals, such as climate change adaptation, and improving the livelihoods of indigenous peoples and local communities; 3. Equip participants with tools to help address ‘real life’ scenarios where mutually supportive implementation is important, and 4. Identify the kinds of additional support that countries need to implement the Plant Treaty and Nagoya Protocol in mutually supportive ways

    Affective practices, care and bioscience: a study of two laboratories

    Get PDF
    Scientific knowledge-making is not just a matter of experiments, modelling and fieldwork. It also involves affective, embodied and material practices (Wetherell 2012) which can be understood together as 'matters of care' (Puig de la Bellacasa, 2011). In this paper we explore how affect spans and connects material, subjective and organisational practices, focusing in particular on the patterns of care we encountered in an observational study of two bioscience laboratories. We explore the preferred emotional subjectivities of each lab and their relation to material practice. We go on to consider flows and clots in the circulation of affect and their relation to care through an exploration of belonging and humour in the labs. We show how being a successful scientist or group of researchers involves a careful choreography of affect in relation to materials, colleagues and others to produce scientific results, subjects and workplaces. We end by considering how thinking with care troubles dominant constructions of scientific practice, successful scientific selves and collectives

    Measured solid state and subcooled liquid vapour pressures of nitroaromatics using Knudsen effusion mass spectrometry

    Get PDF
    Knudsen effusion mass spectrometry (KEMS) was used to measure the solid state saturation vapour pressure (PsatS) of a range of atmospherically relevant nitroaromatic compounds over the temperature range from 298 to 328 K. The selection of species analysed contained a range of geometric isomers and differing functionalities, allowing for the impacts of these factors on saturation vapour pressure (Psat) to be probed. Three subsets of nitroaromatics were investigated: nitrophenols, nitrobenzaldehydes and nitrobenzoic acids. The PsatS values were converted to subcooled liquid saturation vapour pressure (PsatL) values using experimental enthalpy of fusion and melting point values measured using differential scanning calorimetry (DSC). The PsatL values were compared to those estimated by predictive techniques and, with a few exceptions, were found to be up to 7 orders of magnitude lower. The large differences between the estimated PsatL and the experimental values can be attributed to the predictive techniques not containing parameters to adequately account for functional group positioning around an aromatic ring, or the interactions between said groups. When comparing the experimental PsatS of the measured compounds, the ability to hydrogen bond (H bond) and the strength of the H bond formed appear to have the strongest influence on the magnitude of the Psat, with steric effects and molecular weight also being major factors. Comparisons were made between the KEMS system and data from diffusion-controlled evaporation rates of single particles in an electrodynamic balance (EDB). The KEMS and the EDB showed good agreement with each other for the compounds investigated

    Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase

    Get PDF
    Background: Deoxynucleoside triphosphates (dNTPs) are the normal substrates for DNA sysnthesis is catalyzed by polymerases such as HIV-1 reverse transcriptase (RT). However, substantial amounts of deoxynucleoside diphosphates (dNDPs) are also present in the cell. Use of dNDPs in HIV-1 DNA sysnthesis could have significant implications for the efficacy of nucleoside RT inhibitors such as AZT which are first line therapeutics fro treatment of HIV infection. Our earlier work on HIV-1 reverse transcriptase (RT) suggested that the interaction between the γ phosphate of the incoming dNTP and RT residue K65 in the active site is not essential for dNTP insertion, implying that this polymerase may be able to insert dNPs in addition to dNTPs. Methodology/Principal Findings: We examined the ability of recombinant wild type (wt) and mutant RTs with substitutions at residue K65 to utilize a dNDP substrate in primer extension reactions. We found that wild type HIV-1 RT indeed catalyzes incorporation of dNDP substrates whereas RT with mutations of residue K645 were unable to catalyze this reaction. Wild type HIV-1 RT also catalyzed the reverse reaction, inorganic phosphate-dependent phosphorolysis. Nucleotide-mediated phosphorolytic removal of chain-terminating 3′-terminal nucleoside inhibitors such as AZT forms the basis of HIV-1 resistance to such drugs, and this removal is enhanced by thymidine analog mutations (TAMs). We found that both wt and TAM-containing RTs were able to catalyze Pi-mediated phosphorolysis of 3′-terminal AZT at physiological levels of Pi with an efficacy similar to that for ATP-dependent AZT-excision. Conclusion: We have identified two new catalytic function of HIV-1 RT, the use of dNDPs as substrates for DNA synthesis, and the use of Pi as substrate for phosphorolytic removal of primer 3′-terminal nucleotides. The ability to insert dNDPs has been documented for only one other DNA polymerase The RB69 DNA polymerase and the reverse reaction employing inorganic phosphate has not been documented for any DNA polymerase. Importantly, our results show that Pi-mediated phosphorolysis can contribute to AZT resistance and indicates that factors that influence HIV resistance to AZT are more complex than previously appreciated. © 2008 Garforth et al

    A model for transition of 5 '-nuclease domain of DNA polymerase I from inert to active modes

    Get PDF
    Bacteria contain DNA polymerase I (PolI), a single polypeptide chain consisting of similar to 930 residues, possessing DNA-dependent DNA polymerase, 3'-5' proofreading and 5'-3' exonuclease (also known as flap endonuclease) activities. PolI is particularly important in the processing of Okazaki fragments generated during lagging strand replication and must ultimately produce a double-stranded substrate with a nick suitable for DNA ligase to seal. PolI's activities must be highly coordinated both temporally and spatially otherwise uncontrolled 5'-nuclease activity could attack a nick and produce extended gaps leading to potentially lethal double-strand breaks. To investigate the mechanism of how PolI efficiently produces these nicks, we present theoretical studies on the dynamics of two possible scenarios or models. In one the flap DNA substrate can transit from the polymerase active site to the 5'-nuclease active site, with the relative position of the two active sites being kept fixed; while the other is that the 5'-nuclease domain can transit from the inactive mode, with the 5'-nuclease active site distant from the cleavage site on the DNA substrate, to the active mode, where the active site and substrate cleavage site are juxtaposed. The theoretical results based on the former scenario are inconsistent with the available experimental data that indicated that the majority of 5'-nucleolytic processing events are carried out by the same PolI molecule that has just extended the upstream primer terminus. By contrast, the theoretical results on the latter model, which is constructed based on available structural studies, are consistent with the experimental data. We thus conclude that the latter model rather than the former one is reasonable to describe the cooperation of the PolI's polymerase and 5'-3' exonuclease activities. Moreover, predicted results for the latter model are presented

    Development of a Novel Virtual Screening Cascade Protocol to Identify Potential Trypanothione Reductase Inhibitors

    Get PDF
    The implementation of a novel sequential computational approach that can be used effectively for virtual screening and identification of prospective ligands that bind to trypanothione reductase (TryR) is reported. The multistep strategy combines a ligand-based virtual screening for building an enriched library of small molecules with a docking protocol (AutoDock, X-Score) for screening against the TryR target. Compounds were ranked by an exhaustive conformational consensus scoring approach that employs a rank-by-rank strategy by combining both scoring functions. Analysis of the predicted ligand-protein interactions highlights the role of bulky quaternary amine moieties for binding affinity. The scaffold hopping (SHOP) process derived from this computational approach allowed the identification of several chemotypes, not previously reported as antiprotozoal agents, which includes dibenzothiepine, dibenzooxathiepine, dibenzodithiepine, and polycyclic cationic structures like thiaazatetracyclo-nonadeca-hexaen-3-ium. Assays measuring the inhibiting effect of these compounds on T. cruzi and T. brucei TryR confirm their potential for further rational optimization

    An Anaerobic-Type α-Ketoglutarate Ferredoxin Oxidoreductase Completes the Oxidative Tricarboxylic Acid Cycle of Mycobacterium tuberculosis

    Get PDF
    Aerobic organisms have a tricarboxylic acid (TCA) cycle that is functionally distinct from those found in anaerobic organisms. Previous reports indicate that the aerobic pathogen Mycobacterium tuberculosis lacks detectable α-ketoglutarate (KG) dehydrogenase activity and drives a variant TCA cycle in which succinyl-CoA is replaced by succinic semialdehyde. Here, we show that M. tuberculosis expresses a CoA-dependent KG dehydrogenase activity, albeit one that is typically found in anaerobic bacteria. Unlike most enzymes of this family, the M. tuberculosis KG: ferredoxin oxidoreductase (KOR) is extremely stable under aerobic conditions. This activity is absent in a mutant strain deleted for genes encoding a previously uncharacterized oxidoreductase, and this strain is impaired for aerobic growth in the absence of sufficient amounts of CO2. Interestingly, inhibition of the glyoxylate shunt or exclusion of exogenous fatty acids alleviates this growth defect, indicating the presence of an alternate pathway that operates in the absence of β-oxidation. Simultaneous disruption of KOR and the first enzyme of the succinic semialdehyde pathway (KG decarboxylase; KGD) results in strict dependence upon the glyoxylate shunt for growth, demonstrating that KG decarboxylase is also functional in M. tuberculosis intermediary metabolism. These observations demonstrate that unlike most organisms M. tuberculosis utilizes two distinct TCA pathways from KG, one that functions concurrently with β-oxidation (KOR-dependent), and one that functions in the absence of β-oxidation (KGD-dependent). As these pathways are regulated by metabolic cues, we predict that their differential utilization provides an advantage for growth in different environments within the host

    K70Q Adds High-Level Tenofovir Resistance to “Q151M Complex” HIV Reverse Transcriptase through the Enhanced Discrimination Mechanism

    Get PDF
    HIV-1 carrying the “Q151M complex” reverse transcriptase (RT) mutations (A62V/V75I/F77L/F116Y/Q151M, or Q151Mc) is resistant to many FDA-approved nucleoside RT inhibitors (NRTIs), but has been considered susceptible to tenofovir disoproxil fumarate (TFV-DF or TDF). We have isolated from a TFV-DF-treated HIV patient a Q151Mc-containing clinical isolate with high phenotypic resistance to TFV-DF. Analysis of the genotypic and phenotypic testing over the course of this patient's therapy lead us to hypothesize that TFV-DF resistance emerged upon appearance of the previously unreported K70Q mutation in the Q151Mc background. Virological analysis showed that HIV with only K70Q was not significantly resistant to TFV-DF. However, addition of K70Q to the Q151Mc background significantly enhanced resistance to several approved NRTIs, and also resulted in high-level (10-fold) resistance to TFV-DF. Biochemical experiments established that the increased resistance to tenofovir is not the result of enhanced excision, as K70Q/Q151Mc RT exhibited diminished, rather than enhanced ATP-based primer unblocking activity. Pre-steady state kinetic analysis of the recombinant enzymes demonstrated that addition of the K70Q mutation selectively decreases the binding of tenofovir-diphosphate (TFV-DP), resulting in reduced incorporation of TFV into the nascent DNA chain. Molecular dynamics simulations suggest that changes in the hydrogen bonding pattern in the polymerase active site of K70Q/Q151Mc RT may contribute to the observed changes in binding and incorporation of TFV-DP. The novel pattern of TFV-resistance may help adjust therapeutic strategies for NRTI-experienced patients with multi-drug resistant (MDR) mutations
    corecore